
EK -SBCO 1-UG-OO 1

SBC-11/21
Single-Board Computer

User's Guide

momoomD

EK-SBCO 1-UG-001

SBC-11/21
Single-Board Computer

User's Guide

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright © 1982 by Digital Equipment Corporation

All Rights Reserved

The material in this manual is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this manual.

Printed in U.S.A.

The manuscript for this book was created on a DIGITAL Word
Processing System and, via a translation program, was
automatically typeset on DIGITAL's DECset-8000 Typesetting
System. Book production was done by Educational Services
Development and Publishing in Marlboro, MA.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem RSTS
DECnet lAS RSX
DECUS MASS BUS TOPS-IO
DECsystem-IO MINC-II TOPS-20
DECSYSTEM-20 OMNIBUS UNIBUS
DECwriter OS/8 VAX
DIBOL PDP VMS

~DmDDmD PDT VT

1st Edition, June 1982

PREFACE

CHAPTER 1

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3
1.4

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.7.1
2.2.7.2
2.2.7.3
2.3
2.4
2.5
2.5.1
2.5.2
2.6
2.6.1
2.6.2"
2.6.3

CHAPTER 3

3.1
3.2
3.3

CONTENTS

Page

INTRODUCTION

INTRODUCTION... 1-1
SPECIFICATIONS... 1-3

Physical... 1-3
Power Requirements... 1-3
Bus Loading.. 1-3
Environmental....... 1-4

BACKPLANE PIN IDENTIFICATION ... 1-4
RELATED DOCUMENTS ... 1-7

INSTALLATION

INTRODUCTION... 2-1
SELECTING OPERATIONAL FEATURES ... 2-1

Battery Backup 2-1
Wake Up Circuit .. 2-8
Starting Address.. ... 2-8
Interrupts 2-8
Parallel I/O .. 2-11
Serial I/O ... 2-12
Memories.. 2-16

Memory Maps .. 2-16
PROMs/EPROMs ... 2-16
RAMs ... 2-16

SELECTING BACKPLANES AND OPTIONS ... 2-22
POWER SUPPLy .. 2-22
EXTERNAL CABLES .. 2-22

Parallel I/O Interface (13) ... 2-23
Serial Line Interfaces (11 and 12) .. 2-25

VERIFYING OPERATION ... 2-28
Macro-ODT Option :... 2-28
Loopback Connectors. 2-28
Verification Procedure.... 2-28

OPTIONS

INTRODUCTION... 3-1
SUPPORTED OPTIONS .. 3-1
UNSUPPORTED OPTIONS .. 3-4

iii

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.2
4.4
4.4.1
.4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.5
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8

CHAPTERS

5.1
5.2
5.2.1
5.2.1.1
5.2.1.2
5.2.2
5.2.3
5.3
5.4
5.5

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.1.1

CONTENTS (Coot)

Page

MACRO-ODT

INTRODUCTION... 4-1
INSTALLATION AND CONFIGURATION .. 4-1
ENTRY CONDITIONS .. ,... 4-1

Macro-ODT Input Sequence .. 4-1
Macro-ODT Output Sequence ... 4-2

MACRO-ODT COMMANDS... 4-2
/(ASCII 057) Slash.. 4-2
<CR> (ASCII 15) Carriage Return 4-5
<LF> (ASCII 12) Line Feed... 4-5
R (ASCII 122) Internal Register Designator ... 4-5
S (ASCII 123) Processor Status Word (PSW)... 4-6
G (ASCII 107) Go.. 4-6
P (ASCII 120) Proceed 4-6
DD, DX, DY Bootstraps... 4-6
X (ASCII 130) Diagnostics 4-8

INITIALIZATION ... 4-8
WARNINGS AND PROGRAMMING HINTS ... 4-8

Error Decoding 4-8
ODT Stack Warning.. 4-8
Addresses to Avoid... 4-8
CPU Priority...... 4-8
Terminal Related Problems. 4-8
Spurious Halts 4-8
Serial I/O Protocol.. 4-9
Interrupt Vector Initialization 4-9

SYSTEM ARCHITECTURE

INTRODUCTION... 5-1
MICROPROCESSOR ARCHITECTURE.. 5-1

Registers 5-1
General Registers.. 5-1
Status Register 5-1

Hardware Stack.. 5-2
Interrupts .. 5-2

DMA (DIRECT MEMORY ACCESS).. 5-4
MEMORY ORGANIZATION... 5-4
POWER-UP/POWER-DOWN FACILITy... 5-4

PROGRAMMING INFORMATION

INTRODUCTION... 6-1
ASYNCHRONOUS SERIAL LINE UNITS .. 6-1

Data Baud Rates.............. ... 6-1
Interrupts .. 6-7

PROGRAMMING THE PARALLEL I/O INTERFACE 6-7
Modes of Operation............. ... 6-7

Port C Register 6-10

iv

6.3.1.2
6.3.1.3
6.3.1.4
6.3.1.5
6.3.1.6
6.3.2
6.3.2.1
6.3.2.2
6.3.3
6.3.4

CHAPTER 7

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.3.3
7.2.3.4
7.2.4
7.2.5
7.2.5.1
7.2.5.2
7.2.5.3
7.2.5.4
7.2.6
7.3
7.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.3.4
7.3.4
7.3.4.1
7.3.4.2
7.3.5
7.3.5.1
7.3.5.2
7.3.5.3
7.3.5.4
7.3.5.5
7.3.5.6
7.3.5.7
7.3.5.8
7.3.5.9

CONTENTS (Cont)

Page

Mode 0 Basic Input/Output.. ... 6-10
Port A and B Registers... 6-11
Port C Register in Mode 0 .. 6-11
Mode 1 (Strobed Input/Output) .. 6-11
Mode 2 (Strobed Bidirectional I/O) .. 6-18

Control Word Register ... 6-22
Mode Selection 6-22
Setting Bits in Port C .. 6-22

Parallel I/O Initialization ... 6-25
Parallel I/O Handshaking .. 6-25

ADDRESSING MODES AND INSTRUCTION SET

INTRODUCTION... 7-1
ADDRESSING MODES ... 7-1

Single Operand Addressing .. 7-3
Double Operand Addressing... 7-3
Direct Addressing ... 7-5

Register Mode (Mode 0) .. 7-6
Autoincrement Mode (Mode 2).. 7-8
Autodecrement Mode (Mode 4) ... 7-10
Index Mode (Mode 6) ... 7-11

Deferred (Indirect) Addressing. 7-14
Use of the PC as a General-Purpose Register ... 7-17

Immediate Mode .. 7-18
Absolute Addressing ... 7-19
Relative Addressing ... 7-20
Relative Deferred Addressing .. 7-21

Use of the' Stack Pointer as a General-Purpose Register 7-22
INSTRUCTION SET .. 7-22

Instruction Formats .. 7-23
List of Instructions .. 7-26
Single Operand Instructions ... 7-28

General ... 7-29
Shifts and Rotates .. 7-32
Multiple Precision .. 7-37
PS Word Operators .. 7-40

Double Operand Instructions .. 7-41
General......... 7-41
Logical ... 7-44

Program Control Instructions ... 7-47
Branches ... 7-47
Signed Conditional Branches ... 7-52
Unsigned Conditional Branches ... 7-54
Jump and Subroutine Instructions ... 7-56
Traps ... 7-61
Reserved Instruction Traps .. 7-65
HALT Interrupt ... 7-65
Trace Trap .. 7-65
Power Failure Interrupt .. 7~65

v

7.3.5.10
7.3.5.11
7.3.6
7.3.7

CHAPTER 8

8.1
8.2
8.2.1
8.2.1.1
8.2.1.2
8.2.2
8.2.3
8.2.4
8.2.4.1
8.2.4.2
8.2.4.3
8.2.4.4
8.2.4.5
8.2.4.6
8.2.4.7
8.2.5
8.2.5.1
8.2.5.2
8.2.5.3
8.2.5.4
8.2.5.5
8.2.5.6
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

CONTENTS (Cont)

Page

Interrupts.. 7-65
Special Cases (T-bit) .. 7-66

Miscellaneous Instructions ... 7-66
Condition Code Operators .. 7-68

THEORY OF OPERATION

INTRODUCTION... 8-1
MICROPROCESSOR... 8-1

Microprocessor Initialization.. 8-1
RESET Instruction.. 8-4
Power-up Input (PUP) ~... 8-4

Clock Input (- TCLK) 8-5
Ready Input (READY) .. 8-5
Microprocessor Control Signals................ 8-5

Row Address Strobe (RAS) 8-5
Column Address Strobe (CAS) .. 8-5
Priority In (PI) .. ,..................................... 8-5
Read/Write (R/ - WHB and R/ - WLB) ... 8-5
Select Output Flags (SELO and SELl) ;....................................... 8-5
Bus Clear (BCLR) :... 8-6
Clock Out (COUT) .. 8-6

Microprocessor Transactions.. 8-6
Fetch/Read .. 8-6
Write... 8-8
IAK... 8-8
DMA .. 8-8
ASPI... 8-8
NOP ... ;.. 8-8

MODE REGISTER CONTROL. .. 8-10
INTERRUPT CONTROL ... 8-14

Interrupt Control Logic .. 8-15
Ready Logic .. 8-17
IAK Data In (IAKDIN) ... 8-19
HALT Interrupt.. 8-19
Power Fail (-PFAIL) .. 8-22
Local ... 8-22
External .. 8-22
DMA Interrupt ... 8-23

DC004 PROTOCOL 8-23
ADDRESS LATCH ... 8-23
MEMORY ADDRESS DECODE .. 8-23
RAM MEMORY ... 8-23
ROM/RAM MEMORY SOCKETS ... 8-25
SERIAL LINE INTERFACE UNITS 8-26
PARALLEL I/O INTERFACE .. 8-28
POWER-UP :.. 8-30
CLOCK ... 8-30
CLOCK CONTROL .. 8-32
DMA ... 8-32

vi

8.16
8.17
8.18
8.19

CHAPTER 9

9.1
9.2
9.3
.9.4
9.4.1
9.4.2
9.5
9.5.1
9.5.2
9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.7
9.8

APPENDIX A

APPENDIXB

APPENDIXC

APPENDIXD

APPENDIXE

APPENDIXF

INDEX

Figure No.

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7

CONTENTS (Coot)

Page

TSYNC ... 8-35
READ/WRITE .. 8-35
REPLY TIME-OUT ... 8-37
BUS CONTROL .. 8-37

LSI-H BUS

INTRODUCTION ... 9-1
SBC-ll/21 SINGLE-BOARD COMPUTER : .. 9-2
MASTER/SLAVE RELATIONSHIP 9-2
DATA TRANSFER BUS CYCLES ... 9-3

Bus Cycle ProtocoL... 9-4
Direct Memory Access... 9-8

INTERRUPTS ... 9-12
Device Priority.................. 9-12
Interrupt Protocol ... 9-12

CONTROL FUNCTIONS .. 9-14
Halt ... 9-14
Initialization... 9-14
Power Status ... 9-14
Power-Up/Power-Down Protocol ... 9-15

LSI-II BUS ELECTRICAL CHARACTERISTICS ... 9-16
MODULE CONTACT FINGER IDENTIFICATION 9-16

INSTRUCTION TIMING

PROGRAMMING DIFFERENCE LIST

SOFTW ARE DEVELOPMENT

MACRO-ODT ROM

SBC-H/2l SCHEMATICS

GLOSSARY

FIGURES

Title Page

KXT11-AA (M8063-BA) SBC-l1/21 Module... 1-2
SBC-11/21 Module Layout .. 2-2
Interrupt Configurations ,............. 2-10
Time-out During LSI-II Bus Interrupt Acknowledge .. 2-11
Parallel I/O Configuration ... 2-12
Socket Sets A and B Interconnection... 2-17
Memory Configuration ... 2-18
Memory Maps ... 2-19

vii

Figure No.

2·8
2·9
2·10
2·11
5·1
5·2
6·1
6·2
6·3
6·4
6·5
6·6
6·7
6·8
6·9
6·10
6·11
6·12
6·13
6·14
7·1
7·2
7·3
7-4
7·5
7·6
7·7
7·8
7·9
7·10
7·11
7·12
7·13
7·14
7·15
7·16
7·17
7·18
7·19
7·20
7·21
7·22
7·23
7·24
7·25
7·26
7·27
7·28
7·29
7·30
7~31

FIGURES (Cont)

Title Page

30·Pin Parallel I/O Connector .. 2·24
10·Pin Serial Line Unit Connector .. 2·26
BC20N·05 Null Modem Cable ... 2·27
BC21B·05 Modem Cable .. 2·27
Registers and Processor Status Word ... 5·2
Memory Maps...... 5·6
Serial Line Unit (SLU) Interface ... 6·2
Serial Line Unit Register Bit Maps .. 6·3
Parallel I/O Interface... 6·8
Parallel I/O Flowchart ... 6·9
Mode 0 Port A or B Bit Assignments..................... 6·11
Mode 0 Port C Bit Assignments .. 6·12
Mode 1 Port C Bit Assignments .. 6·15
Mode 2 Port C Bit Assignments .. 6·20
Mode 1 Input Data Handshaking Sequence ... 6·26
Mode 1 Strobed Input Timing ... 6·26
Mode 1 Output Data Handshaking Sequence .. 6·27
Mode 1 Port A Strobed Output Timing .. 6·28
Mode 1 Port B Strobed Output Timing .. 6·28
Mode 2 Port A Bidirectional Timing .. 6·29
Single Operand Addressing .. 7·3
Double Operand Addressing ... 7·3
Mode 0 Register .. 7·5
Mode 2 Autoincrement ... 7·5
Mode 4 Autodecrement .. 7·6
Mode 6 Index .. 7·6
INC R3 ... 7·7
ADD R2,R4 ... 7·7
COMB R4... 7·8
CLR (R5)+ .. ' 7·8
CLRB (R5) + .. 7·9
ADD (R2)+,R4.. 7·9
INC -(RO) ... 7·10
INCB -(RO) .. 7·11
ADD -(R3),RO .. 7·11
CLR 200(R4) .. 7·12
COMB 200(Rl) ~ ... 7·13
ADD 30(R2),20(R5) ... 7·13
Mode 1 Register Deferred .. 7·14
Mode 3 Autoincrement Deferred .. 7·14
Mode 5 Autodecrement Deferred ... 7·15
Mode 7 Index Deferred ... 7·15
CLR @R5 .. 7·15
INC @(R2)+ ... 7·16
COM @ -(RO) ... 7·16
ADD @1000(R2),Rl ... 7·17
ADD.#10,RO ... 7·19
CLR @#1100 ... 7·20
ADD @#2000,R3 .. 7·20
INC A ~ ... 7·21
CLR @A ... 7·22

viii

Figure No.

7-32
7-33
7-34
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
C-l
C-2
C-3
C-4
C-5
C-6
C-7
C-8
C-9
C-I0
C-l1
C-12

FIGURES (Cont)

Title Page

Byte Instructions ... 7-25
Multiple Precision ... 7-37
JSR Example .. 7-59
SBC-ll/21 Functional Block Diagram... 8-2
SBC-ll/21 Microprocessor .. 8-4
Fetch/Read Transaction... 8-7
Write Transaction ... 8-9
IAK Transaction ... 8-10
DMA Transaction ... 8-11
ASPI Transaction................................ 8-12
BUS NOP Transaction ... 8-12
Mode Register Control.. 8-13
SBC-l1/21 Interrupt Control ... 8-14
Interrupt Control Logic 8-17
Ready .. 8-18
IAKD IN 8-20
HALT Interrupt ... , 8-21
Memory Maps 8-24
RAM Memory.......................... 8-25
ROM/RAM Memory Sockets .. 8-26
Serial Line Interface Units ... 8-27
Parallel I/O Interface ~ .. 8-29
Power-up 8-31
Clock ... 8-31
Clock Control .. 8-33
DMA ... 8-34
TSYNC ... 8-35
Read/Write... 8-36
Reply Time-out ... 8-38
Bus Control ... 8-39
DATI Bus Cycle ... 9-6
DATI Bus Cycle Timing... 9-7
DATO or DATOB Bus Cycle ... 9-9
DATO or DATOB Bus Cycle Timing ... 9-10
DMA Protocol. .. 9-11
DMA Request/Grant Timing ... 9-12
Interrupt Request/ Acknowledge Sequence .. 9-13
Power-Up/Power-Down Timing .. 9-15
Double-Height Module Contact Finger Identification ... 9-16
Overview of Software Development. C-3
Application Overview C-5
Monitor Program C-6
Load Map.. C-8
Power-up Task... C-9
Power Fail Recovery.. C-9
SLU Diagnostic Task .. C-I0
RAM Diagnostic Task .. C-I0
ROM Diagnostic Task .. C-l1
Parallel I/O Diagnostic Task .. C-l1
Control Task .. C-12
Power Fail Task ... C-13

ix

Table No.

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10 .
2-11
2-12
2-13
2-14
2-15
4-1
4-2
5-1
5-2
5-3
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
7-1
7-2
7-3
7-4
7-5

TABLES
Title Page

SBC-l1/21 Module Backplane Pin Identification.. 1-5
Related Documentation 1-7
Configuration Pin Definitions 2-3
Configuration Pin Functions 2-5
Standard Factory Configuration.. 2-7
Mode Register Configuration 2-9
Mode 0 Buffer Configuration (No Handshake) .. 2-13
Mode 1 Buffer Configuration (Strobed I/O) .. 2-14
Mode 2 Buffer Configuration and Handshake .. 2-15
SLUI BREAK Detection ... 2-15
Memory Map Configurations ... 2-20
Socket Set A Configuration for EPROM/PROM ... 2-20
Socket Set B Configuration for EPROM/PROM .. 2-21
Socket Set A Configuration for RAM .. 2-22
Socket Set B Configuration for RAM .. 2-22
EIA Slew Rate Resistor Values .. 2-26
Diagnostic Fault Indicators... 2-29
Macro-ODT Commands ... 4-3
Macro-ODT States and Valid Input Characters... 4-4
Processor Status Word Bit Descriptions ... 5-3
PSW Interrupt Levels 5-3
SBC-ll/21 Interrupts... 5-5
Serial Line Unit Register Addresses... 6-3
Receiver Control and Status Bit Descriptions .. 6-4
Receiver Data Buffer Bit Descriptions ... 6-4
Transmitter Control and Status Bit Descriptions ... 6-5
Transmitter Data Buffer Bit Descriptions .. 6-6
Parallel I/O Register Addresses... 6-7
Mode 0 Configuration ... 6-10
Mode 0 Port A or B Bit Descriptions 6-11
Mode 0 Port C Bit Descriptions .. 6-12
Port C Control Signals in Mode 1 6-13
Combinations of Mode 1 ... 6-14
Mode 1 Port C Bit Descriptions .. 6-15
Mode 1 Configuration 6-18
Port C Control Signals in Mode 2................... .. 6-19
Mode 2 Port C Bit Descriptions : ... 6-20
Mode 2 Configuration ... 6-21
Control Register Mode Selection Bit Functions , 6-22
Control Words for Mode Selection ... 6-23
Control Register Bit Set/Reset Functions .. 6-24
Interrupt Set/Reset Control Words .. 6-24
Mode 1 Input Handshaking Signals .. 6-25
Mode 1 Output Handshaking Signals ... 6-27
Mode 2 Bidirectional Handshaking Signals .. 6-29
Sample SBC-l1/21 Instructions... 7-4
Direct Addressing Modes.. 7-5
Indirect Addressing Modes 7-14
Register Addressing Modes .. 7-18
SBC-ll/21 Instruction Set ... 7-26

x

Table No.

8-1
8-2
8-3
8-4
9-1
9-2
9-3
9-4
A-I
B-1
B-2

TABLES (Coot)

Title Page

Start Address Configurations ... 8-13
Designated Interrupts ... 8-16
Serial Line Unit Registers .. 8-28
PPI Addrt;ssable Registers.. 8-30
Signal Assignments 9-3
Data Transfer Operations ... 9-4
Bus Signals Used in Data Transfer Operations... 9-4
Bus Pin Identifiers 9-17
Instruction Timing A-I
SBC-l1j21, LSI-llj2, and LSIjllj23 Comparisons .. B-1
Illegal Address Traps B-6

xi

PREFACE

This User's Guide provides the user with configuration, system architecture, and programming infor­
mation for the SBC-II/2I single-board computer. The configuration requirements are described in
Chapter 2, and the system architecture is presented in Chapter 5. The programming techniques are
described in Chapter 6, and the instruction set is listed in Chapter 7. Operational theory is presented in
Chapter 8, and the schematics are in Appendix E. The Macro-ODT option is described in Chapter 4,
and the listing is in Appendix D. Options for use on the LSI-ll bus are listed in Chapter 3, and the
module bus requirements are described in Chapter 9. An example of software development is covered
by Appendix C. Appendix A summarizes the instruction timing, and Appendix B compares the SBC-
11/21 to other LSI-II microprocessors.

NOTE
This User's Guide is for use with the SBC-ll/21
module, MS063 Revision D and subsequent revisions
only. This revision is identified by the circuit board
#50144SD-XX located on the module as described in
Figure 1-1. Use manual EK-KXTll-UG for Revi­
sion C modules.

xiii

1.1 INTRODUCTION

CHAPTER 1
INTRODUCTION

The KXTII-AA (M8063-BA) module, called the SBC-ll/21 single-board computer, is shown in Figure
1-1. It is a complete computer system on an 8.5 X 5.2 inch printed circuit board that executes the well­
known PDP-ll instruction set (see Appendix B). The SBC-ll/21 module contains 4Kb (kilobytes) of
RAM, sockets for up to 32Kb of PROM or additional RAM, two serial I/O lines, twenty-four lines of
parallel I/O, and a 50 Hz, 60 Hz, or 800 Hz real-time clock. In addition, the SBC-ll/21 supports the
complete LSI-ll bus interface that enables it to communicate with most of Digital's large family of
modules (see Chapter 3) described in the Microcomputer Interfaces and Microcomputers and Memo­
ries handbooks.

The SBC-ll/21 computer features the following:

• A powerful processor running the PDP-ll instruction set.

• Direct addressing of 32K, 16-bit words or 64K, 8-bit bytes (K = 1024).

• Efficient processing of 8-bit characters without the need to rotate, swap, or mask.

• On-board 4Kb of static read/write memory.

• Sockets for up to 32Kb of PROM for a wide range of memory types from many vendors.
Additional RAM can also be installed in these sockets.

• Hardware memory stack for handling data, subroutines, and interrupts.

• Direct memory access for high data rate devices.

• Eight general-purpose registers for data storage, pointers, and accumulators; two are dedi­
cated: stack pointer (SP) and program counter (PC).

• Fast on-board bus for high throughput when external memory access is not needed.

• LSI-II bus structure that provides position dependent priority for peripheral device inter­
faces connected to the bus.

• Fast vectored interrupt response without device polling.

• A powerful set of instructions.

• Two serial I/O interfaces, compatible with EIA RS-232C and EIA RS-423, with software
programmable baud rates over the range of 300 to 38,400 baud.

1-1

0000 0 J3
OOD

IC40/

2 E62 12 E50

2 E6l 12 E49

~ E60

~ IC361 XE59 I C271

~ IC351 XE58 /c261

~ IC341 XE57 IC251

§ E56 I§ E48

p [§] XE55 ~. ~ ~ XE45 ~

IC321 XE54 IC301 IC231 XE44 IC181

D CD

I~f E53 In E38 Q Yl

lru§
D DO E3

I~gl I E52 E43 C8

12 q Z6 Z3
E19 E2

2 E5l 12 E47 12 E3,7 1@]2 E18 12 El
Z5 Z4

DCC

MA·7527

Figure 1-1 KXTll-AA (MS063-BA) SBC-llj21 Module

1-2

• One parallel I/O interface with two bidirectional S-bit input/output ports and one S-bit con­
trol port.

• Real-time clock that can be set by the user to 50 Hz, 60 Hz, or SOO Hz.

• Jumper-selected operating modes, including four memory maps, exception handling, start
and restart addresses, parallel I/O configurations, and real-time clock frequency.

• Optional PROM resident Macro-ODT containing module diagnostics, bootstrap programs
for mass storage devices (TU5S, RXOI, and RX02), console communications, and on-line de­
bugging facility.

1.2 SPECIFICATIONS
The SBC-l1 /21 module specifications follow:

1.2.1 Physical

Height

Length
(includes module handle)

Width

Weight

1.2.2 Power Requirements

Power Supply:

+5.0 V ± 5%

+12.0 V ± 5%

Battery Backup:

+5.0 V ± 5%

13.2 em (5.2 in)

22.S em (S.9 in)

1.27 em (0.5 in)

360 g (12 oz) maximum

2.5 A (typical), 2.S A (maximum)

60 rnA (typical) used by on-board circuitry, 1.1 A (maximum)
includes current provided to outside interface through pin 10 of
the serial I/O connector

170 rnA (typical), 260 rnA (maximum)

NOTE
The + 12.0 V typical current is measured with no
connections at pin 10 of the serial I/O connectors
(fused line).

1.2.3 Bus Loading

AC Loads
DC Loads

2.4
1.0

1-3

1.2.4 Environmental

Temperature:

Storage
Operating

-40° C to 65° C (-40° F to 150° F)
5° C to 60° C (41° F to 140° F)

NOTE
The module must be brought into the operating tem­
perature environment and allowed to stabilize before
operating.

Relative Humidity:

Storage
Operating

Altitude:

Storage
Operating

Environment:

10% to 90% (no condensation)
10% to 90% (no condensation)

Up to 15 km (50,000 ft)
Up to 15 km (50,000 ft)
(90 mm mercury minimum)

NOTE
Lower the maximum operating temperature by 1 ° C
(1.8° F) for each 300 m (1,000 ft) of altitude above
2.4 km (8,000 ft).

Air must be noncaustic.

Airflow (operating): There must be enough airflow to limit the input to output tem­
perature rise across the module to 5° C (9° F) when the input
temperature is 60° C (140° F). For operation below 55° C
(131 ° F), there must be enough airflow to limit the input to
output temperature rise across the module to 10° C (18° F)
maximum.

NOTE
These are design limits. Lower temperature limits
will help increase the life of the product.

1.3 BACKPLANE PIN IDENTIFICATION
Table 1-1 lists backplane pin connections for the SBC-ll 121 module, pin identification and signal
names unique to the SBC-11/21 module, and standard LSI-ll bus backplane names assigned to each
pin. Although the signal names may differ, the module is completely LSI-ll bus compatible with the
exception of bus refresh transaction (BREF) which is not performed by the SBC-11/21. Signals STOP
L, SRUN L, and START L are not used on the LSI-II bus. These are TTL level signals unique to the
SBC-11/21.

1-4

Table 1-1 SBC-H/21 Module Backplane Pin Identification

Backplane SBC-H/21 LSI-H Bus
Pin Signal Function Signal Name

Side 1 (Component Side)

AAI Bus terminator BIRQ5 L
ABI Bus terminator BIRQ6 L
ACI Bus terminator BDAL16 L
ADI Bus terminator BDAL17 L
AEI STOPL SSPAREI
AFI SRUNL SSPARE2
AHI Not connected SSPARE3
AJI GND GND
AKI Not connected MSPAREA
All GND MSPAREA
AMI GND GND
ANI BDMRL BDMRL
API BHALTL BHALTL
ARI Bus terminator BREFL
ASI Not connected +12B
ATI GND GND
AUI Not connected PSPAREI
AVI + 5 VB (battery) +5B

BAI BDCOKH BDCOKH
BBI BPOKH BPOKH
BCl Bus terminator SSPARE4
BDI Bus terminator SSPARE5
BEl Bus terminator SSPARE6
BFl Bus terminator SSPARE7
BHl STARTL SSPARE8
BJI GND
BKI Not connected MSPAREB
BLI Not connected MSPAREB
BMI GND
BNI BSACKL BSACKL
BPI Bus terminator BIRQ7 L
BRI BEVNTL BEVNTL
BSI Not connected +12B
BTl GND GND
BUI Not connected PSPARE2
BVI +5V +5V

1-5

Table 1-1 SBC-ll/21 Module Backplane Pin Identification (Cont)

Backplane SBC-ll/21 LSI-II Bus
Pin Signal Function Signal Name

Side 2 (Solder Side)

AA2 +5V +5V
AB2 Not connected -12 V
AC2 GND GND
AD2 +12V +12 V
AE2 BDOUTL BDOUTL
AF2 BRPLYL BRPLYL
AH2 BDINL BDINL
Al2 BSYNCL BSYNCL
AK2 BWTBTL BWTBTL
AL2 BIRQ4L BIRQ4 L
AM2 Not connected BIAKI L
AN2 BIAKOL BIAKOL
AP2 BBS7L BBS7L
AR2 Not connected BDMGI L
AS2 BDMGOL BDMGOL
AT2 BINITL BINIT L
AU2 BDALOL BDALOL
AV2 BDALIL BDALIL

BA2 +5V +5V
BB2 Not connected -12 V
BC2 GND GND
BD2 +12V +12V
BE2 BDAL2L ·BDAL2L
BF2 BDAL3L BDAL3L
BH2 BDAL4L BDAL4L
BJ2 BDAL5L BDAL5L
BK2 BDAL6L BDAL6 L
BL2 BDAL7L BDAL7 L
BM2 BDAL8L BDAL8L
BN2 BDAL9 L BDAL9L
BP2 BDALI0 L BDALI0 L
BR2 BDALll L BDALll L
BS2 BDAL12 L BDAL12 L
BT2 BDAL13 L BDAL13 L
BU2 BDAL14 L BDAL14 L
BV2 BDAL15 L BDAL15 L

1-6

1.4 RELATED DOCUMENTS
This User's Guide is the primary reference document for the SBC-llj21. Important information about
other LSI-II bus compatible products may be found in the publications listed in Table 1-2.

Table 1-2 Related Documentation

Title

Microcomputers and Memories Handbook, 1982 Edition

Microcomputer Interfaces Handbook, 1980 Edition

PDP-II Bus Handbook, 1979 Edition

These documents can be ordered from:

Digital Equipment Corporation
Printing and Circulation Services
444 Whitney Street
Northboro, MA 01532

Attention: Communications Services (NR2jMI5)
Customer Services Section

1-7

Document Number

EB-20912-20

EB-20175-20

EB-17525-20

2.1 INTRODUCTION

CHAPTER 2
INSTALLATION

The installation of the SBe-11 /21 single-board computer module is discussed in this chapter. The fol­
lowing five items, which are an integral part of the installation procedure, are covered in detail.

NOTE
It is best to leave tbe factory configuration as is until
module performance has been verified.

1. Installing jumpers to select operational features.

2. Selecting and mounting an LSI-II bus-structured backplane and adding any required LSI-II
bus options.

3. Selecting and connecting an appropriate power supply.

4. Providing appropriate cables to connect external devices to the serial line and parallel I/O
interfaces.

5. Verifying operation of the module.

2.2 SELECTING OPERATIONAL FEATURES
The module has sixty-five wirewrap pins with which the user configures the module for the operating
modes necessary to meet any requirements. This is done by either installing or removing jumper wires
between the wirewrap pins. The locations and identification numbers of the wirewrap pins are illus­
trated in Figure 2-1. Table 2-1 defines the wirewrap pins, and Table 2-2 lists the pin functions by the
features they support. The selectable features are battery backup, power-up, starting address, inter­
rupts, parallel I/O buffers, and memory maps. Detailed requirements for each of these configurations
are described in the following paragraphs. The standard factory configuration is described in Table 2-3.

2.2.1 Battery Backup
The user can select the battery backup mode to maintain a +5 Vdc battery supply to the 4Kb of static
RAM and, if needed, to the two 28-pin sockets that are defined as socket set A. The +5 Vdc battery
supply is provided through the LSI-ll bus via pin AV1. A maximum of 260 rnA is required. This sup­
ply is connected to wire wrap pin M16. To enable battery backup of 4Kb of static RAM, the jumper
wire between Ml and M15 is removed, and a jumper wire is installed between M16 and M15. To pro­
vide backup for socket set A, the jumper wire between M7 and M1 is removed, and a jumper wire is
installed between M 15 and M7.

2-1

M65

M54
M5o/ M53 M51

060e! ~M50
M52,..o 0-M49

2 E62

J3

M2~fl:21
,....---P-R-O-G-R-A-M-M-A-BL-E....,.,~",.~g~~ ~1~

E60 PERIPHERAL M28g.gg M20

XE59

XE58

INTERFACE M27 ~~M19

SERIAL LINE UNIT M'f;i'
N02 lJ
SERIAL LINE UNIT
NO 1

XE57 MICROPROCESSOR

XE55
HIGH BYTE
SOCKET SET B

XE45
LOW BYTE
SOCKET SET B

J2 J1

XE54 XE44 M10

HIGH BYTE LOW BYTE M14 0 d.M9 M4
SOCKET SET A SOCKET SET A M13 0 ~M8 /.-

'--------~ L-------M12 017 0 0 OM2

o M63 M43 0 0 M36 M6/
oM64 M4400M37 /08M11

g ~~~ ~~~ gg ~~~ M5
M600 0 M57 M40 001\1133 M3. Y1
M5900 M56 M39 00 M32

o M55 M3800M31

IOM48

... ~ ___ E5_2 __ g ~* oM7

E19

~r---E-37----'1 C;r---E 1-8----,

000 rL..-___ -'
\

\ "M1
M15

M16

Figure 2-1 SBC-llj21 Module Layout

2-2

MA-7526

Pin

Ml
M2
M3
M4
M5

M6
M7
M8
M9
MIO

MIl
Ml2
M13
Ml4
M15

M16
M17
Ml8
M19
M20

M21
M22
M23
M24
M25

M26
M27
M28
M29
M30

M31
M32
M33
M34
M35

M36
M37
M38
M39
M40

Schematic
Sheet
Number

1
I
3
3
3

3
5
3
I
3

1
3
3
3
1

1
6
2
6
6

2
1
6
6
2

1
6
6
1
1

5
5
5
5
5

5
5
5
5
5

Table 2-1 Configuration Pin Definitions

Description

System + 5 V power
Clock system input
System GND
Wake up circuit diode, anode side
Receive side of BHAL T line transceiver

Wake up circuit diode, cathode side
Socket set A, pin 26, high and low byte
BHALT interrupt request input (edge sensitive)
Interrupt acknowledge (- IAK) output
-CTMER interrupt request input (edge sensitive)

Clock oscillator output
High logic level (+ 3 V dc)
- CTMER interrupt enable
Time-out error (TMER) output
+ 5 V dc power distribution to support static RAM

Battery backup +5 Vdc power source
Serial line unit (SLU) 1 BREAK detect, interrupt request output
High logic level (+ 3 V dc)
60 Hz real-time clock output
Transmit side of BHAL T line transceiver

Memory map select (MSB)
Start address control (TDAL 15)
Transmit side of BEVNT line transceiver
System GND
Memory map select (LSB)

Start address control (TDAL 14)
50 Hz real-time clock output
800 Hz real-time clock output
System GND
Start address control (TDAL 13)

Read strobe (READ)
Socket set B, high and low byte, pin 20
Socket set B, high byte, pin 27
Socket set B, chip select, (-CSKTB)
Socket set B, low byte, pin 23

Address line 13
Socket set A, low byte, pin 27
Socket set A, high and low byte, pin 20
Socket set A, high byte, pin 27
Socket set A, low byte, pin 23

2-3

Table 2-1 Configuration Pin Definitions (Cont)

Schematic
Sheet

Pin Number Description

M41 5 Socket set A, chip select, (- CSKTA)
M42 5 Socket set B, high and low byte, pin 2
M43 5 Socket set A, high and low byte, pin 2
M44 5 Address line 12
M45 5 Address line 11

M46 5 High logic level for PROMs
M47 5 Socket sets A and B, high and low byte, pin 21
M48 5 Socket set B, low byte, pin 27
M49 7 Port B buffer direction control
M50 2 High logic level (+3 Vdc)

M51 7 System GND
M52 7 Port A buffer direction control
M53 7 Port C buffered output, to 13 pin 7
M54 7 Port C PC6 output(8255A-5 pin 11)
M55 5 System GND

M56 5 High byte write strobe (-WHB)
M57 5 Low byte write strobe (-WLB)
M58 7 Port C PC4 output (8255A-5 pin 13)
M59 3 + 5 V dc voltage level
M60 5 Socket set A, high and low byte, pin 22

M61 5 Socket set A, high byte, pin 23
M62 5 Socket set B, high and low byte, pin 22
M63 5 Socket set B, high byte, pin 23
M64 5 Read strobe (-READ)
M65 7 Port C buffered output, to 13 pin 5

2-4

Pin Function

Clock oscillator

M2
MIl

Battery backup

MI
MI5
MI6
M7

Nonmaskable interrupt
and trap to the restart
address

MIO
MI4
Ml3
M9
M3
MI2

Serial line unit (SLU) I

M24
M20
Ml7

Power-up

M6
M4

Table 2-2 Configuration Pin Functions

Description

Clock system input
Clock oscillator output

System + 5 V power
+5 Vdc power distribution to support static RAM
Battery backup + 5 V power source
Socket set A, pin 26, high and low byte

-CTMER interrupt request input (edge sensitive)
Time-out error (TMER) output
- CTMER interrupt enable
Interrupt acknowledge (- IAK) output
System GND
High logic level (+ 3 V dc)

System GND
Transmit side of BHALT line transceiver
Serial line unit (SLU) I BREAK detect, interrupt request output

System + 5 V power, wake up circuit diode, cathode side
Wake up circuit diode, anode side

Serial line unit (SLU) 2

M23
M27
Ml9
M28

Memory map decoder

MI8
M25
M2I
M29

Transmit side of BEVNT line transceiver
50 Hz real-time clock output
60 Hz real-time clock output
800 Hz real-time clock output

High logic level (+ 3 V dc)
Memory map select (LSB)
Memory map select (MSB)
System GND

2-5

Pin Function

M30
M26
M22
MI8

M3
M5
M8

M45
M46
M61
M33
M48
M38
M63
M32
M62
M35
M40
M43
M42

M36
M34
M37
M39
M44
M55
M64
M31
M57
M56
M41
M60
M47
M59

Start address
(mode register)

BHAL T interrupt
(level 7, maskable)

Memory

Table 2-2 Configuration Pin Functions (Cont)

Description

Start address control
Start address control
Start address control
High logic level (+3 Vdc)

System GND
Receive side of BHAL T line transceiver
BHAL T interrupt request input (edge sensitive)

Address line II
High logic level, for PROMs
Socket set A, high byte, pin 23
Socket set B, high byte, pin 27
Socket set B, low byte, pin 27
Socket set A, high and low byte, pin 20
Socket set B, high byte, pin 23
Socket set B, high and low byte, pin 20
Socket set B, high and low byte, pin 22
Socket set B, low byte, pin 23
Socket set A, low byte, pin 23
Socket set A, high and low byte, pin 2
Socket set B, high and low byte, pin 2

Address line 13
Socket set B, chip select, (-CSKTB)
Socket set A, low byte, pin 27
Socket set A, high byte, pin 27
Address line 12
System GND
Read strobe (-READ)
Read strobe (READ)
Low byte write strobe (-WLB)
High byte write strobe (-WHB)
Socket set A, chip select, (- CSKTA)
Socket set A, high and low byte, pin 22
Socket sets A and B, high and low byte, pin 21
+ 5 V dc voltage level

2-6

Table 2-2 Configuration Pin Functions (Cont)

Pin Function

M49
M51
M65
M53
M58
M54
M50
M52

Parallel input/output

Function

Standard LSI-II bus power
(No battery backup)

Wake up circuit enabled

System clock

Start address*
Start address 10000
Restart address 10004

Memories:

Memory map 0

Description

Port B buffer direction control
System GND
Port C buffered output, to 13 pin 5
Port C buffered output, to 13 pin 7
Port C PC4 output (8255A-5 pin 13)
Port C PC6 output (8255A-5 pin II)
High logic level (+ 3 V dc)
Port A buffer direction control

Table 2-3 Standard Factory Configuration

Jumpers
Installed
Between

MI and MI5
MI andM7

No jumpers

M2and Mll

M30 and M26
M26 andM29
M22 and MI8

M25 and M21
M21 and M29

2K X 8 INTEL EPROM M61 and M40
M59 and M61
M41 and M38
M45 and M47
M63 and M35
M59 and M63
M60and M62
M34and M32
M64 and M62

2-7

Table 2-3 Standard Factory Configuration (Cont)

Function

Interrupts:

Time-out traps to restart address
except during LSI-II bus IAK

SLUI BREAK asserts BHALT and it
is received as level 7 interrupt
(vector 140)

SLU2 60 Hz real-time clock
asserts LSI-II BEVNT

Parallel I/O in mode I:
Port A receive data, with STROBE A
onPC4
Port B transmit data

No connection to pins:

Jumpers
Installed
Between

M9 and M13
MI4 and MIO

M20 and MI7
M5 and M8

MI9 and M23

M49 and M5I
M50 and M52
M65 and M58

M3,M4,M6,MI2,MI6,M24,M27,M28,M3I,M33,M36,M37,M39,M42,M43,M44,M46,M48,
M53, M54, M55, M56, M57

*Before use with Macro-ODT, the start address must be changed to 172000 as described in Table 2-4.

2.2.2 Wake Up Circuit
The module has an on-board power wake up circuit designed for use in systems without the LSI-II bus
power sequencing protocol. This circuit holds the BDCOK line negated until one second after + 5 V
power is applied. When the module is used in an LSI-II backplane that has a power sequencing routine,
the module wake up circuit must be disabled. To do this, a jumper wire is installed between M6 and
M4. The jumper wire is removed when using power supplies without power sequencing. The module
requires the +5 Vdc and + 12 Vdc power supplies to have a rise time of less than 50 ms.

2.2.3 Starting Address
The user selects the starting address for the microprocessor via wirewrap pins. When the module is
powered up, the microprocessor loads this value into R7 (program counter) as the first fetch address.
The wirewrap pins are M22, M26, M29, M30, and MI8, and are defined in Table 2-1. The user can
select from eight available starting addresses. Table 2-4 lists these available addresses and the jumper
connections required for each address. The restart address is always the start address incremented by
four. The wirewrap pin locations are shown in Figure 2-1. .

2.2.4 Interrupts
The SBC-II/2I implements a multilevel interrupt system that has eleven separate interrupts. See
Table 5-3 for a complete list of sy~tem interrupts. Three interrupts, CTMER, BKRQ, and REVNT, are
user configurable by means of jumper wires as shown in Figure 2-2 and are discussed here.

2-8

Table 2-4 Mode Register Configuration

Start Restart Connect Connect Connect
Address Address M22to M26to M30to

000000 000004 M18 M29 M18
010000* 010004 M18 M29 M29
020000 020004 M29 M18 M18
040000 040004 M29 MI8 M29
100000 100004 M29 M29 M18
140000 140004 M29 M29 M29
172000 172004 MI8 M18 M18
173000 173004 MI8 MI8 M29

*Factory setting. The start address should be selected in conjunction with the memory map configuration. Figure 2-6 shows
how the available start addresses fit into the memory maps.

The CTMER interrupt is at the highest level (nonmaskable). It is caused by a time-out, that is, a failure
to detect RRPL Y during a fetch/read, write, or IAK transaction. For the factory configuration, - IAK
is connected to the D input of flip-flop E7 via M9 to M13 jumper. This prevents setting that flip-flop
and inhibits CTMER for time-outs occurring during IAK transactions. Such a condition could occur
only if the peripheral that caused the interrupt failed to return BRPL Y during the vector reading oper­
ation. See Chapter 8 for a discussion of external interrupts. To help the user evaluate the advantages
and disadvantages of this jumper option, Figure 2-3 describes the sequence of events that takes place
during the IAK time-out.

A time-out during IAK causes a zero vector to be read in by the microprocessor. This occurs in both
examples described in Figure 2-3. If CTMER is allowed to set, this causes the second stacking of PC
and PSW followed by a jump to restart.

The other two interrupts the user can select are BKRQ and REVNT. Their vectors and priorities are
described in Table 5-3. All jumper combinations, which are "electrically correct" as described in Fig­
ure 2-2, are legal.

A description of some typical configurations follows to familiarize the user with the different com­
binations available.

Install jumpers 1?etween MI4 and M8
M13 and M12
MIO and M17
M24 and M20
M23 and M28

This arrangement allows the SLUI BREAK input to set the -CTMER nonmaskable interrupt and
trap to the restart address. The time-out (TMER) input sets the BKRQ level 7 maskable interrupt. The
BHAL T L bus signal is ignored. The SLU2 800 Hz line time clock and the BEVNT L bus signal enable
the REVNT interrupt.

2-9

+3VDC-A 1 GND
M12 M36

-IAK M9 M13
~--------- D D

ONE SHOT E7 E32

RRPLY L TMERM14 M10
CAS -CTMER TDOUT H

D --- ------ C C
TDIN H INTERRUPT

E9 E29 NONMASKABLE

C RESET -BCLR

+3 VDC

D D
BKRQ

RRPLY L INTERRUPT
E17 E32 LEVEL

SLUl M17 M20 THALT M5 M8
CAS MASKABLE

N
BREAK --0- - -- -------- C C I .-

M24 0
GND--C

BHALT L RESE~ -BCLR

+3VDC
BEVNT L

REVENT
M27 D D

INTERRUPT
50HZ --0 E10 E27 LEVEL 6

SLU'{ M19 M23 TEVNT
C

CAS
60HZ --4:]- - -- C LTC

M28
800HZ --C

RESET

MR"7515

Figure 2-2 Interrupt Configurations

LSI-ll BUS INTERRUPT
(BIRQ4)

I
PROCESSOR RETURNS IAK , 1 ,

M13 CONNECTED TO M9 (-IAK) M13 CONNECTED TO M12 (+3 VDC)

~ ,
TIME-OUT DURING IAK TIME-OUT DURING IAK , ,

NO CTMER CTMER SET

~
PC AND PSW PUSHED ON THE STACK

~
PC AND PSW PUSHED ON THE STACK

PC AND PSW LOADED FROM VECTOR AND VECTOR +2
(VECTOR IS 0 BECAUSE NOTHING IS DRIVING TDAL)

PC AND PSW LOADED FROM VECTOR AND VECTOR +2
(VECTOR IS 0 BECAUSE NOTHING IS DRIVING TDAL)

~
JUMP TO NEW PC

1
NEW PC AND PSW PUSHED AGAIN ,

RESTART ADDRESS-PC
340 -+PSW

~
JUMP TO NEW PC

Figure 2-3 Time-out During LSI-II Bus Interrupt Acknowledge

Install jumpers between MIa and M5
MI7 and M8
M13 and MI2
M20 and M24
M23 and M24

MR-7516

This arrangement allows the BHALT L bus signal to set the -CTMER nonmaskable interrupt and
trap to the restart address. The SLUI BREAK input sets the BKRQ level 7 maskable interrupt, and
only the BEVNT L bus signal enables the REVNT interrupt.

Install jumpers between MI4 and MIa
MI3 and MI2
MI7 and M20
M5 and M8
M23 and MI2

This arrangement allows the time-out (TMER) to set the -CTMER nonmaskable interrupt for all
time-outs. The SLUI BREAK or the BHAL T bus signal set the BKRQ level 7 maskable interrupt, and
the BEVNT L bus line is clamped low and therefore, no interrupts can be generated by BEVNT L.

2.2.5 Parallel I/O
The parallel I/O is implemented with the 8255A-5 programmable peripheral interface (PPI) and con­
nects to the user's interface through the 13 connector. Figure 2-4 illustrates the wirewrap pins used for
the configuration of the parallel I/O. (These pins are defined in Table 2-1.) The dash lines in Figure 2-4
represent the factory configuration jumpers installed. (The wirewrap pin locations are shown in Figure
2-1.) The directions of port A and port B transceivers are dependent on the logic level connected to
M49 and M52. Wirewrap pin 52 connects to port A through a 200 ns minimum rise time edge delay
circuit. When M50 (+3 Vdc) is jumpered to pins M49 and M52, port A and port B buffers are inputs
to the PPI from the 13 connector. When M5I (GND) is jumpered to pins M49 and M52, port A and
port B buffers are outputs from the PPI to the 13 connector.

2-11

PORT C

pca
PCl

PC2

pca

PC3 } INTERRUPTS

J3

~---;---------; 9

~r---------; 3

~--~--------~ 4
PC3

M58
~=---~------~--~ ~~--~-----; 10

PC4

PC5

PC6

PC7

M65

LED

5

6

7

8

M5l M49
GN D --0- - -o-------------...J

PORT A BUS
TRANSCEIVERS

r C12

Figure 2~4 Parallel I/O Configuration

MR-7514

The direction of port A and port B can also be controlled by a user's program. To make this possible,
M58 and M54 must be jumpered to M49 and M52. The data outputs via port C will control the voltage
levels at the direction control inputs to ports A and B. The software required to do this control is dis­
cussed in Chapter 6.

Wirewrap pins M65 and M53 can be jumpered to M49 and M52 to allow the user to control the direc­
tion of the transceivers via 13 connector pins 5 and 7. When not using wire wrap pins M58 and M65 or
M54 and M53 to control the direction of ports A and B, jumpers connected between M58 and M65 and
between M54 and M53 allow PC4 and PC6 to be used as inputs to the PPI from the 13 connector.

NOTE
If pins M65, M53, M58, or M54 are used for pro­
gram control of port A or B, the user must ensure
that the PPI and the buffer do not contend as driver
output to driver output. If this condition is allowed
to occur, damage to both drivers may result.

The programmable peripheral interface can function in three modes selected by software. The jumper
configurations and the handshake signals for each of these modes are shown in Table 2-5, Table 2-6,
and Table 2-7. See Chapter 6 for programming information.

2.2.6 Serial I/O
The jumper options relating to the serial I/O determine the interrupt response of the system and were
explained in Paragraph 2.2.4. All responses to the BREAK detection by SLUI are listed in Table 2-8.

2-12

Table 2-5 Mode 0 Buffer Configuration (No Handshake)

PPI To Act To Act Program Control
Element as Input as Output via Port C

PortA M52 to M50 M52 to M51 M52 to M54 or M58

Port B M49 to M50 M49 to M51 M49 to M54 or M58

PC7 Never an input Always an output

PC6 M54 to M53 Never an external
output

PC5 Never an input Always an output

PC4 M58 to M65 N ever an external
output

PC3 Never an input Interrupt A
(vector 134)
Always an output

PC2 Always an input Never an output

PC1 Never an input Always an output

PCO Never an input Interrupt B
(vector 130)
Always an output

2-13

Table 2-6 Mode 1 Buffer Configuration (Strobed I/O)

PPI To Act To Act Program Control
Element as Input as Output via Port C

PortA M52 to M50 M52 to M51 NjA

Port B M49 to M50 M49 to M51 M49 to M54 or M58

PC7 Never an input Indicates
buffer A full

PC6 M54 to M53 Never an
(Acknowledge A)* external output

PC5 Never an input Indicates
buffer A full

PC4 M58 to M65 Never an
(Strobe A) external output

PC3 Never an input Interrupt A

PC2 Strobe B Never an output
in input mode
Acknowledge B in
output mode

PCI Never an input Buffer B full
on input or output

PCO Never an input Interrupt B
(vector 130)

·User's hardware acknowledges receipt of data output by port A.

2-14

PPI Element

PortA

Port B

PC7

PC6

PC5

PC4

PC3

PC2

PCI

PCO

Table 2-7 Mode 2 Buffer Configuration and Handshake

Input Signal Output Signal

Bidirectional bus If M52 to M54 to M53

Not used in mode 2 Not used in mode 2

Never an input Output buffer A full

Acknowledge A Never an output

Never an input Input buffer A full

Strobe A (if M65 to M58) Never an output

Never an input Interrupt A

Always an input Never an output

Never an input Always an output

Never an input Always an output

Table 2-8 SLUt BREAK Detection

Jumper Connection*

M17 to M20
M5 toM8

M20 to M24
M5 toM8

M8 to Ml7
M20toM24

MIO to M17
M20toM24
M13 to M12

*Refer to Figure 2-2.

BREAK Response

BHAL T L signal to the LSI-II bus
and BKRQ interrupt (vector 140)

No response

BKRQ interrupt (vector 140)
(no BHALT L to bus)

CTMER interrupt
(HALT trap) through restart

2-15

2.2.7 Memories
The memory system for the module is the LSI-II bus, 4 Kb of local RAM, and four 28-pin sockets that
accept either 24-pin or 28-pin industry standard + 5 V memory chips. These chips are provided by the
user and can be either EPROMs, PROMs, ROMs, or static RAMs. The sockets will accept lK X 8,
2K X 8, 4K X 8, and 8K X 8 PROMs/EPROMs, or 2K X 8, 4K X 8, and 8K X 8 static RAMs.

There are two socket sets: set A which is controlled by - CSKTA and set B which is controlled by
- CSKTB. Each set has a high byte socket and a low byte socket that are interconnected as shown in
Figure 2-5. The wirewrap pins used to configure the memory are shown in Figure 2-6 and described in
Table 2-1. The standard factory configuration of the installed jumper wires is represented by the dash
lines in Figure 2-6. In addition to configuring the sockets, the user must configure the decode memory
address chip to select one of the four memory maps available.

NOTE
The SBC-H/2l contains semiconductor devices
that may be susceptible to damage by electrostatic
charges. When handling the board and configuring
the wirewrap pins, the board should be kept on a
grounded conductive plane. Also, wrist straps in con­
tact with the skin should be used to keep the oper­
ator at the same ground potential.

2.2.7.1 Memory Maps - Figure 2-7 shows the four memory maps available. The module can be con­
figured to select the one that meets the user's requirements. Wirewrap pins M18, M21, M29, and M25
are used to select the memory map. The jumper requirements are listed in Table 2-9.

2.2.7.2 PROMs/EPROMs - The 28-pin sockets accept 24-pin and 28-pin PROMs or EPROMs. If 24-
pin chips are selected, caution must be observed to ensure that pin 1 of the chip is placed into socket
hole 3. The configuration requirements of some industry compatible PROMs/EPROMs are described
in Table 2-10 and Table 2-11. The user may select chips from other vendors, however, the pin con­
figuration must be compatible with the sockets provided. A 250 ns maximum output enable time is also
required, and the maximum access time for compatible PROMs/EPROMs is 450 ns. The maximum
output enable time is defined as the time from the assertion of TDIN or TDOUT by a bus master to the
time the module asserts valid data onto the bus.

The user installs a jumper wire from the pin referenced by the chip type to the socket pin described in
the tables. Figure 2-6 provides a reference for all signals and the socket pins associated with the wire­
wrap pins. These interconnections are listed separately under socket set A and socket set B, and some
jumper wires are common to both socket sets. Some devices may not require a connection or installation
of a jumper wire and are designated by an 'NC' in the tables. The wirewrap pin locations are shown in
Figure 2-1.

2.2.7.3 RAMs - The 28-pin sockets can also accept 24-pin static RAM chips, and caution must be
observed to ensure that pin 1 of the chip is installed into socket hole 3. The configuration requirements
of some industry compatible RAMs are described in Table 2-12 and Table 2-13. The user may select
chips from other vendors, however, the pin configuration must be compatible with the sockets provided.
The selected RAMs are required to meet the maximum output enable time and the maximum access
time specified for the PROMs.

The user installs a jumper wire from the pin referenced by the chip type to the socket pin described in
the tables. Figure 2-6 provides a reference for all signals and the socket pins associated with the wire­
wrap pins. These interconnections are listed separately under socket set A and socket set B, and some
jumper wires are common to both socket sets. Some devices may not require a connection or installation
of a jumper wire and are designated by an 'NC' in the tables. The wirewrap pin locations are shown in
Figure 2-1.

2-16

28 28
M43 +5 V +5 V

M42
+5 V +5 V

2 27 2 27
M39 M33

3 26 M7 3 26 M41 AD8 AD8 +5 V
-CSKTA -0 4 25 4 25

M34
AD7 AD9 AD7 AD9

-CSKTB -a AD6
5 24

AD10 AD6
5 24

AD10
M45 6 28 PIN 23 6

28 PIN 23
M63 AD5 M61 AD5

AD11 -0 7 SOCKET SET A 22 7 SOCKET SET B 22
M44 AD4 HIGH BYTE AD4 HIGH BYTE

8 21 M60 8 21 M62 AD12 -a AD3 AD3
M36 9 XE54 20 9 XE55 20

AD2 AD2
AD13 -0

AD1
10 19 M38 10 19

TDAL15 M32
M56 TDAL15 AD1

-WHB --[] TDAL8 11 18
TDAL14 TDAL8

11 18
TDAL14

M57 TDAL9 12 17 TDAL13 TDAL9
12 17 TDAL13

-WLB -a TDAL10 13 16
TDAL12 TDAL10 13 16 TDAL12

M64
14 15 14 15

-READ -a GND TDAL11 GND TDAL11

M31
READ -a M47

M46
+3VDC --0

tv M59 I
I--' +5 VDC --[J
-.l 28 1 28 M55 +5 V +5 V +5 V +5 V

GND --[J 2 27 2 27 o M37 M48

AD8
3 26

AD8
3 26

+5 V
4

AD7
25 AD9

AD7
4 25

AD9
5 24 AD10 5 24

AD6 AD6 AD10
6 23 6

28 PIN
23

AD5 28 PIN M40 AD5 M35
7 SOCKET SET A 22 7 SOCKET SET B 22

AD4
LOW BYTE

AD4 LOW BYTE 8 21 8 21
AD3 AD3

9 XE44 20 9 XE45 20
AD2 AD2

10 19 10 19
AD1 TDAL7 AD1 TDAL7

11 18 11 18
TDALO TDAL6 TDALO TDAL6

12 17 12 17
TDAL1 TDAL5 TDAL1 TDAL5

13 16 13 16
TDAL2 TDAL4 TDAL2 TDAL4

14 15 TDAL3
14 15

TDAL3 GND GND

MR-7509

Figure 2-5 Socket Sets A and B Interconnection

AD11

PIN 21 HIGH BYTE SET A

M45 . ~47 PIN 21 LOW BYTE SET A

~------ PIN21 HIGH BYTE SET B

~ PIN 21 LOW BYTE SET B AD12

+5 V NCR
M59 M61

-=:::..0- - - - - -r--D--- PIN 23 HIGH BYTE SET A

-WHB ~
-WLB ~

AD13 ~

+3VDC ~

M31
READ~

~_-<lf-M_4.;...0 __ PIN 23 LOW BYTE SET A

~ - -DI-M_6_3 __ PIN 23 HIGH BYTE SET B

L_-CI-M_ 3_5 __ PIN 23 LOW BYTE SET B

~ PIN 2 HIGH BYTE SET A

~ PIN 2 LOW BYTE SET A

~ PIN 2 HIGH BYTE SET B

~ PIN 2 LOW BYTE SET B

C M39 PIN 27 HIGH BYTE SET A

C M37 PIN 27 LOW BYTE SET A

C M33 PIN 27 HIGH BYTE SET B

C M4B PIN 27 LOW BYTE SET B

-READ ~ ______ ~PIN22HIGHBYTESETA

T PIN 22 LOW BYTE SET A

GND ~ L_~PIN22 HIGH BYTESETB

~PIN 22 LOW BYTE SET B

-CSKTA ~ _______ ~PIN 20 HIGH BYTE SET A

.... L- PIN 20 LOW BYTE SET A

-CSKTB ~ _______ ~ PIN 20 HIGH BYTE SET B

~ PIN 20 LOW BYTE SET B

~ PIN 26 HIGH BYTE SET A

~ PIN 26 LOW BYTE SET A

+3V~ M25~----------~
DECODE

GND~
NOTE:

... , ...
I M21

M7 IS USED TO PROVIDE BATTERY
BACKUP POWER TO SOCKET SET A
WHEN THIS OPTION IS INCORPORATED.

MEMORY
ADDRESS

Figure 2-6 Memory Configuration

2-18

MR-7513

(177776)
(173000)
(172000)
(170000)

(160000)

(140000)

(120000)

(100000)

(60000)

(40000)

(20000)

(10000)

(NOTE4)

64KB

56KB

4BKB

40KB I-

32KB

24KB I-

16KB i-

BKB i-

OKB

MAPO MAPl MAP2

(NOTE 3)
64KB

(NOTE 3)

64KB

(NOTE 3)
2KB(NOTE 1)

4KB LOCAL RAM 4KB LOCAL RAM 4KB LOCAL RAM
(NOTE 2) (NOTE 2) (NOTE 2)

56KB 56KB

4BKB 48KB

LSI-ll BUS LSI-ll BUS LSI-ll BUS

40KB ,. 40KB

32KB . 32KB

24KB 24KB

16KB 1 6KB

BKB SOCKET A

8KB BKB

4KB SOCKET A
BKB SOCKET B

4KB SOCKET B
OKB OKB

NOTES:
1. SOCKET SET A IS MAPPE DOVE R SOCKET SET B AN D IS

THEREFORE LIMITED TO USING EITHER SOCKET A OR
SOCKET B, BUT NOT BOTH TOGETHER.

2. ADDRESSES 160000 THROUGH 160007 ARE ASSUMED TO
RESIDE ON THE LSI-ll BUS.

3. THIS SECTION CONTAINS THE LOCAL I/O ADDRESSES FOR
THE SLUs AND PPI. ALL UNASSIGNED ADDRESSES ARE
ASSUMED TO RESIDE ON THE LSI-11 BUS.

4. UNDERLINED ADDRESSES ARE JUMPER-SELECTABLE START
ADDRESSES, ACCORDING TOTABLE 2-4.

Figure 2-7 Memory Maps

2-19

MAP3

64KB

(NOTE 3)

4KB LOCAL RAM
(NOTE 2)

56KB

48KB

LSI-ll BUS

40KB

32KB

24KB 16KB SOCKET A

16KB

8KB 16KB SOCKET B

OKB

MA-7243

Table 2-9 Memory Map Configurations

Map Selection Jumper M25 to Jumper M21 to

Map 0 M21 M29
Map 1 M18 M29
Map 2 M29 M18
Map 3 M21 M18

Table 2-10 Socket Set A Configuration for EPROM/PROM

Connect Referenced
Pin to Socket A Pin

Vendor Parts Pins Size M40 M37 M43 M61 M60 M38 M39 M47

EPROMs

INTEL 2758 24 lK X 8 M59 NC NC M59 M64 M41 NC M55

INTEL 2716 24 2K X 8 M59 NC NC M59 M64 M41 NC M45
2716-1 24 2K X 8
2716-2 24 2K X 8

INTEL 2732 24 4K X 8 M44 NC NC M44 M64 M41 NC M45
2732A 24 4K X 8

INTEL 2764 28 8K X 8 M44 M46 M36 M44 M64 M41 M46 M45

TI TMS2508 24 lK X 8 M59 NC NC M59 M64 M41 NC M46

TI TMS2516 24 2K X 8 M59 NC NC M59 M64 M41 NC M45
TMS2516-35 24 2K X 8

TI TMS2564 28 8K X 8 M36 M55 M64 M36 M41 M44 M55 M45

Mostek MK2716 24 2K X 8 M59 NC NC M59 M64 M41 NC M45

Mostek MK2764 28 8K X 8 M44 NC M36 M44 M64 M41 NC M45

PROMs

INTEL 3628 24 lK X 8 M41 NC NC M41 M64 M46 NC M46

Signetics 82LS181 24 lK X 8 M41 NC NC M41 M64 M46 NC M46

NC - requires no connection.

2-20

Table 2-11 Socket Set B Configuration for EPROM/PROM

Connect Referenced Pin
to Socket B Pin

Vendor Parts Pins Size M35 M48 M42 M63 M62 M32 M33 M47

EPROMs

INTEL 2758 24 lK X 8 M59 NC NC M59 M64 M34 NC M55

INTEL 2716 24 2K X 8 M59 NC NC M59 M64 M34 NC M45
2716-1 24 2K X 8
2716-2 24 2K X 8

INTEL 2732 24 4K X 8 M44 NC NC M44 M64 M34 NC M45
2732A 24 4K X 8

INTEL 2764 28 8K X 8 M44 M46 M36 M44 M64 M34 M46 M45

TI TMS2508 24 lK X 8 M59 NC NC M59 M64 M34 NC M46

TI TMS2516 24 2K X 8 M59 NC NC M59 M64 M34 NC M45
TMS2516-35 24 2K X 8

TI TMS2564 28 8K X 8 M36 M55 M64 M36 M34 M44 M55 M45

Mostek MK2716 24 2K X 8 M59 NC NC M59 M64 M34 NC M45

Mostek MK2764 28 8K X 8 M44 NC M36 M44 M64 M34 NC M45

PROMs

INTEL 3628 24 lK X 8 M34 NC NC M34 M64 M46 NC M46

Signetics 82LS181 24 lK X 8 M34 NC NC M34 M64 M46 NC M46

NC - requires no connection.

2-21

Table 2-12 Socket Set A Configuration for RAM

Vendor Parts Pins

Mostek MK4802 24

Toshiba TMM2016P 24
TMM2016P-l 24

Hitachi HM6116P 24

NC - requires no connection.

Size

2K X 8

2K X 8
2K X 8

2K X 8

Connect Referenced Pin
to Socket A Pin
M40M37 M43 M61 M60 M38 M39 M47

M57 NC NC M56 M64 M41 NC M45

M57 NC NC M56 M64 M41 M54 M45

M57 NC NC M56 M64 M41 M54 M45

Table 2-13 Socket Set B Configuration for RAM

Vendor Parts Pins

Mostek MK4802 24

Toshiba TMM2016P 24
TMM2016P-l 24

Hitachi HM6116P 24

NC - requires no connection.

Size

2K X 8

2K X 8
2K X 8

2K X 8

Connect Referenced Pin
to Socket B Pin
M35 M48 M42 M63 M62 M32 M33 M47

M57 NC NC M56 M64 M34 NC M45

M57 NC NC M56 M64 M34 NC M45

M57 NC NG M56 M64 M34 NC M45

2.3 SELECTING BACKPLANES AND OPTIONS
A number of different LSI-II bus compatible backplanes and boxes are available from Digital. The
choice is defined by system requirements such as the number and type of options (described in Chapter
3), environment conditions, and packaging considerations. A list of all available backplanes and boxes is
provided in the Microcomputer Interfaces Handbook.

2.4 POWER SUPPLY
The choice of power supply is controlled by the size of the system and packaging requirements. An
important consideration is the performance of the supply during power-up and power-down. All Digital
power supplies listed in the Microcomputer Interfaces Handbook are compatible with the LSI-II bus
protocol which allows dependable operation with no loss of data when using battery backed-up memo­
ries. Any user-designed power supply must agree with the LSI-ll bus protocol.

2.5 EXTERNAL CABLES
The module has a 30-pin connector (13) for an external interface with the programmable I/O interface
and two 10-pin connectors (11 and 12) for the external interface of the serial line units (SLUs). The
location of these connectors on the module is shown in Figure 2-1. The requirements to interface with
these connectors are defined in the following paragraphs.

2-22

2.5.1 Parallel I/O Interface (J3)
The module connector is a 30-pin AMP MOOU connector with the I/O signals defined by Figure 2-8.
The I/0 signals are buffered and are capable of driving up to 50 feet (maximum) of flat ribbon or
round cable with a 30-pin AMP contact housing at each end. The following list of connectors is com­
patible with the module connector.

AMP MOOU polarized or non polarized contact housings for crimp snap-in pin and receptacle contacts:

Latching, polarized
housings:

Nonlatching, polarized
housings:

Nonlatching, nonpolarized
housings:

Receptacle contacts:

Mass termination connectors for flat cables:

Separate parts:
(nonpolarized)

Separate parts:
(polarized)

Connector and cover kits:
(nonpolarized)

Connector and cover kits:
(polarized)

Separate parts:

Latching connectors and covers:
(polarized)

Mass modular connector system:

2-87631-6 no strain relief
87733-6 strain relief

1-87977-3 no strain relief
1-102184-3 strain relief

2-87456-6 no strain relief
2-87832-7 strain relief

87045-3 for 30 to 26 A WG
102098-3 for 32 to 27 A WG

1-88378-1 connector
1-86873-2 cover
1-88340-1 strain relief cover

1-88392-1 connector
1-86373-2 cover
1-88340-1 strain relief cover

1-88379-1 no strain relief
1-88476-1 with strain relief

1-88393-1 no strain relief
1-88478-1 with strain relief

1-88392-1 connector
1-86873-2 cover
1-88340-1 strain relief cover

1-88423-1 no strain relief
1-88479-1 with strain relief

1-102393-3 housing for 30-26 AWG
1-102396-3 cover
1-102392-3 kit
1-102398-3 housing for 26-22 AWG
1-102396-3 cover
1-102397-3 kit

Connectors can be terminated to discrete wire in sizes 30-26 AWG, 26-24 AWG, as well as jacketed
cable and bonded ribbon cable.

2-23

PPI INTERFACE
CONNECTOR J3

r--- LOOPBACK
PCO 9 9 TEST CONNECTORS
PCl 3
PC2 4
PC3 10
PC4 5

3 JUMPER WIRES

4
(USED ONLY WHEN PORT
ARE CONFIGURED AS INP

10 PORT B BUFFERS ARE CO
5 AS OUTPUTS)

PC5 6 6
PC6 7 7
PC7 8 8
PBO 12 12
PBl 14 14
PB2 18 18
PB3 20 20
PB4 19 19
PB5 17 17
PB6 13 13 ~
PBl 11
PA7 28

11 P 28
PA6 26 26 ~
PA5 24 24
PA4 22 22
PA3 21 21
PA2 23 23
PAl 25 25
PAO 27 27

1 1
2 2

GND 15 15

.,.. 16 16
29 29
30 30

~

VIEW INTO THE CONNECTOR FROM THE MODULE EDGE

A BUFFERS
UTS AND
NFIGURED

29 27 25 23 2 1 19 17 15 13 11 9 7 5 3

GND PAO PAl PA2 PA3 PB4 PB5 GND PB6 PB7 PCO PC6 PC4 PCl GND

GND PA7 PA6 PA5 PA4 PB3 PB2 GND PBl PBO PC3 PC7 PC5 PC2 GND

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Figure 2-8 30-Pin Parallel I/O Connector

2-24

,
PC
BOARD

MR-6671

2.5.2 Serial Line Interfaces (Jl and J2)
Each serial line unit (SLU) is compatible with EIA RS-232C and EIA RS-423 serial type interfaces.
SLUI interfaces through Jl, and SLU2 interfaces through J2. When a 20 rnA current loop device is
needed, the DLVll-KA option must be used. The option has an EIA cable (BC2lA-03) that connects
the converter box to the module. The box has an 8-pin Mate-N-Lok™ connector that mates with the
standard 20 rnA cable. The option does not support the reader run strobe and the 110 baud rate and
therefore, the LA-33 or similar devices cannot be used.

The user installs a slew rate resistor determined by the operating baud rate defined in Table 2-14. The
slew rate resistor is identified as R6 and its location on the module is shown in Figure 1-1.

The SLU connectors showing the signals assigned to the connector pins are illustrated in Figure 2-9.
The user provides the interconnecting cables. The following list describes some standard Digital cables
and also provides some information to help the user design cables.

Digital cables for the SBC-11/21:

BC20N-05 5-foot EIA RS-232C null modem cable to directly interface with the EIA RS-232C ter­
minal (2 X 5 pin AMP female to RS-232C female; see Figure 2-10).

BC2lB-05 5-foot EIA RS-232C modem cable to interface with modems and acoustic couplers (2
X 5 pin AMP female to RS-232C male; see Figure 2-11).

BC20M-50 50-foot EIA RS-422 or RS-423 cable for high throughput transmission (19.2K baud)
between two SBC-11/21 computers (2 X 5 pin AMP female to 2 X 5 pin AMP fe­
male).

When designing a cable for the SBC-11/21, the user should consider the following points:

1. The receivers on the SBC-11/21 have differential inputs. Therefore, when designing an RS-
232C or RS-423 cable, RECEIVE DATA- (pin 7 on the 2 X 5 pin AMP connector) must
be tied to signal ground (pins 2, 5, or 9) in order to maintain correct EIA levels. RS-422 uses
both RECEIVE DATA+ and RECEIVE DATA-.

2. To directly connect to a local EIA RS-232C terminal, it is necessary to use a null modem. To
design the null modem into the cable, a user must switch RECEIVE DATA (pin 2) with
TRANSMITTED DATA (pin 3) on the RS-232C male connector as shown in Figure 2-10.

3. To mate to the 2 X 5 pin connector block, the following parts are needed.

Cable receptacle

Locking clip contacts

Key pin (pin 6)

''''Mate-N-Lok is a trademark of AMP, Inc.

AMP PN 87133-5
DEC PN 12-14268-02

AMP PN 87124-1
DEC PN 12-14267-00

AMP PN 87179-1
DEC PN 12-15418-00

2-25

Table 2-14 EIA Slew Rate Resistor Values

Baud Rate

38,400
19,200
9,600
4,800
2,400
1,200
600
300

Resistor R6 (ohms)

22kQ*
51 kQ
120 kQ
200kO
430kQ
820kQ
1 MO
1 MQ

*Factory installed value.

SLU
CONNECTOR

BAUD RATE LOOPBACK
CLOCK OUTPUT TEST CONNECTOR
(16 X BAUD) JUMPER WIRES

TRANSMIT DATA + 3 3

INDEXING KEY 6 6

RECEIVE DATA + B 8

RECEIVE DATA- 7

+12 VDC FUSED 10

2

4
GND

-=- 5

9

VIEW INTO THE CONNECTOR FROM THE MODULE EDGE

9 7 5 3

0 0 0 0 0

0 0 • 0 0

10 8 6 4 2

"- PC BOARD

INDEX (NO PIN)

MR-6669

Figure 2-9 lO-Pin Serial Line Unit Connector

2-26

SBC-11/21
EIA RS-232C

3 ,-, ,-, 3
XMTDATA+)~~---------I~'---------rI~I----------~(RCVDATA

: I I

RCVDATA+)8 I II 2(XMTDATA

RCV DATA-~

GRD)-LJ

GRD)~2~--------+I~--------~----------~7(GRD
'.' y 1 (

IMPORTANT:
ATTACH TO CHASSIS
AT ENTRY POINT

SHIELD

MR-6672

Figure 2-10 BC20N-05 Null Modem Cable

GRD) 9

RCV DATA) 7

+12 VDC
~10

RCV DATA) 8

XMITDATA+)3

GRD) 2

SBC-11/21 EIA RS-232C

'-

'-

'-,

... ,

,

,

- r--

75.0.1/2 W

0
CABLE --- CONNECTOR '---

(

~

~

"

5 ~ - • CLEAR TO SEND (CB)
I

4 ~- J REQUEST TO SEND (CA)

6 (- -, DATA SET READY (CC)
I

~,

"
I

20~--'DATA TERMINAL READY (CD)

J ,
J ,
~

"
,

3 (RECEIVED DATA (BB)

2 <TRANSMITTED DATA (BA)

7<SIGNALGROUND (AB)

1 < PROTECTIVE GROUND (AA)
MODEM

MR-6673

Figure 2-11 BC21B-05 Modem Cable

2-27

2.6 VERIFYING OPERATION
The SBC-ll/21 single-board computer can be field tested to verify its functional operation. The
Macro-ODT option and the loopback connectors support the testing of the module.

2.6.1 Macro-ODT Option
The Macro-ODT option (part # KXTll-A2) has two 24-pin, 2K X 8 PROM chips that contain the
Macro-ODT code and module diagnostic programs. The Macro-ODT code is used to create commu­
nication between the module and the user via console commands. The use of ODT commands is de­
tailed in Chapter 4. The module diagnostic programs verify that the parallel I/O and serial line unit
interfaces will function with commands from the microprocessor.

2.6.2 Loopback Connectors
The loop back connectors can be made by the user for the module diagnostic tests. The 30-pin connector
with the loopback jumper wires installed (shown in Figure 2-8) is used with the parallel I/O connector
13. The serial line unit connector with the loopback jumper wires installed (shown in Figure 2-9) is used
with the SLU2 connector 12.

2.6.3 Verification Procedure
The module must be restored to the standard factory configuration for the test to be valid, however, the
start address must be 172000 not 10000. The module can be verified using the following procedure.

1. Set the start address to 172000 as shown in Table 2-4.

2. Insert the high byte ODT ROM into socket set A, high byte socket E54. Make sure pin 1 is
inserted into socket hole 3.

3. Insert the low byte ODT ROM into socket set A, low byte socket E44. Make sure pin 1 is
inserted into socket hole 3.

4. Insert the 30-pin loopback connector (see Paragraph 2.6.2) into the module parallel I/O con­
nector 13.

5. Insert the 10-pin loopback connector (see Paragraph 2.6.2) into the SLU2 connector 12.

6. Install the module into the LSI-ll backplane with the power turned off. An external power
supply may be used to provide +5 Vdc to finger pins BV1, BA2, and AA2, + 12 Vdc to
finger pin BD2, and ground to finger pins BJI, AJI, AT1, AC2, BC2, AMI, and BM!.

7. Connect an external terminal (printer or video). The terminal must be capable of generating
a 7-bit ASCII code with odd parity or 8-bit ASCII code with no parity, and baud rates of
300, 600, 1,200, 2,400, 4,800, or 9,600. The terminal is connected to SLUl connector 11
using a Digital BC20N-05 cable or equivalent. Turn the terminal on and on-line.

8. Turn on the backplane power or enable the +5 Vdc and + 12 Vdc sources. Monitor the mod­
ule LED; it should light and then return to the normal off state. If the LED stays lit, there is
a fault in the SLU1 circuits or the on-board RAM memory.

9. After the backplane power is turned on, press the RETURN key (carriage return) on the
terminal to have the module synchronize its baud rate to that of the terminal. The module
responds with the prompt character '@'.

10. To start the module diagnostic programs press the 'X' key. The diagnostic test will exercise
the module including the parallel I/O and SLU2. The results of the test are printed out on
the terminal. The error results are listed in Table 2-15 and indicate what area of the module
contains a fault. The error code '000000' indicates a good module.

2-28

Table 2-15 Diagnostic Fault Indicators

Parallel I/O Internal Serial * External Serial**
Printout Loopback Test I/O Loopback Test I/O Loopback Test

000000 Passed Passed Passed

000001 Failed Passed Passed

000010 Passed Failed Not performed

000011 Failed Failed Not performed

000100 Passed Passed Failed

000101 Failed Passed Failed

000110 Not used Not used Not used

000111 Not used Not used Not used

* The internal serial I/0 loopback test exercises the parallel-to-serial conversion, the serial-to-parallel conversion, and the
baud rate. This test can be performed without the loopback connector.

** The external serial I/0 loopback test exercises the above functions as well as the drivers, receivers, and the external
signal paths.

2-29

CHAPTER 3
OPTIONS

3.1 INTRODUCTION
The SBC-11/21 is a complete single-board microcomputer that operates on the LSI-ll bus or in a
stand-alone configuration. In some applications, it may be desirable to add optional modules to the
SBC-11/21 to extend its function beyond that provided by the module itself. Paragraphs 3.2 and 3.3 list
all options available. For more information, see the documents listed in Paragraph 1.4 of this guide.

3.2 SUPPORTED OPTIONS
The following options are functionally compatible with the SBC-ll/21. Software diagnostics for these
options run on a SBC-11/21 equipped with a mass storage device (TU58, RX01, or RX02) and the
Macro-ODT option. To order diagnostics, contact your Digital sales representative.

TU58

AAVll-C

ADVll-C

AXVII-C

The TU58 is a low-cost mass memory device that is used with the SBC-ll/21 byattach­
ing it to one of the serial I/O lines. TU58 offers random access to block-formatted data
on pocket-size cassette media. It is ideal as a small computer systems device, as in­
expensive archive mass storage, or as a software update distribution medium. A dual
drive TU58 offers 512Kb of storage space, making it one of the lowest cost complete
mass storage subsystems available. For mounting flexibility, the TU58 is offered both as
a component level subsystem and as a fully powered 5-1/2 inch rack-mount subsystem.
The TU58 interfaces with the microprocessor over an RS-423 serial line interface.

The AAV11-C is a 4-channel, 12-bit digital-to-analog converter module that includes con­
trol and interfacing circuits. It has four D / A converters, a dc-dc converter that provides
power to the analog circuits, and a precision voltage reference. Each channel has its own
holding register that can be addressed separately and provides 12 bits of resolution. Bits
0, I, 2, and 3 of the fourth holding register are brought out to the I/O connector so that
they can be used as a 4-bit digital output register.

The ADVII-C is a 12-bit successive approximation analog-to-digital converter that sam­
ples analog data at specified rates and stores the digital equivalent value for processing.
The multiplexer can accommodate up to sixteen single-ended or eight quasi-differential
inputs. The converter uses a patented auto-zeroing design that measures the sampled data
with respect to its own offset and therefore, cancels out its own offset error.

Three reference signals are provided for self-testing any channel input. These signals con­
sist of two dc levels and one bipolar triangular waveform. This output can be used with
Digital diagnostic software to produce a data base for precise analog linearity testing.

The AXVII-C functions like the ADVI1-C, but also has two 12-bit digital-to-analog con­
verters similar to those on the AAVll-C module.

3-1

DLVII-E The DLVll-E is an asynchronous line interface module that interconnects the LSI-II
bus to standard serial communications lines. The module receives serial data, converts it
to parallel data, and transfers it to the LSI-II bus. It also accepts parallel data from the
LSI-II bus, converts it to serial data, and transmits it to the peripheral device. The mod­
ule has jumper selectable or software selectable baud rates (SO-I9,200) and jumper sel­
ectable data bit formats. The DLVII-E offers full modem control for EIA/CCITT inter­
faces.

DLVII-F The DLVII-F is an asynchronous line interface module that interconnects the LSI-ll
bus to several types of standard serial communications lines. The module receives serial
data, converts it to parallel data, and transfers it to the LSI-ll bus. It also accepts paral­
lel data from the LSI-ll bus, converts it to serial data, and transmits it to the peripheral
device. The module has jumper selectable or software selectable baud rates (SO-I9,200)
and jumper selectable data bits. The DL Vll-F supports either 20 rnA current loop de­
vices or EIA standard lines, but does not include modem control.

DLVll-J The DLVll-J contains four independent asynchronous serial line channels that are used
to interface peripheral devices to the LSI-II bus. Each channel transmits and receives
data from the peripheral device over EIA data leads (lines that do not use a control line).
The module can be used with 20 rnA current loop devices if a DLVll-KA adapter is
used. The DLVll-J has jumper selectable baud rates from ISO to 39.4K baud.

DPVII-DA The DPVll-DA is a single-line, program-controlled, double-buffered communication de­
vice designed to interface the LSI-II bus to a serial synchronous line. This self-contained
unit can use a wide range of protocols including bit-oriented protocols (SDLC, HDLC,
ADCCP, and X.2S) and byte-oriented protocols (DDCMP and BISYNC).

DRVll

DRVII-B

DRVII-J

The module is used for high-speed synchronous lines such as remote batch, remote data
collection, remote concentration, and communication networking. The module, com­
patible with EIA RS-232 and CCITT V.28 interface standards, is also compatible with
EIARS-423 and 422 electrical standards and thus, provides low-cost, local commu­
nications capability.

The DRVII is a parallel interface module used to interconnect the LSI-II bus with gen­
eral-purpose parallel line TTL or DTL devices. It allows program-controlled data trans­
fers at rates up to 40K words per second and uses LSI-II bus interface and control logic
to generate interrupts and process vector handling. The data is handled by sixteen diode
clamped input lines and sixteen latched output lines. There are two 40-pin connectors on
the module for user interface applications.

The DRVII-B is an interface module that uses direct memory access (DMA) to transfer
data directly between the system memory and an I/O device. The interface is program­
med by the processor to move variable length blocks of 8-bit or 16-bit data words to or
from specified locations in the system memory. Once programmed, no processor inter­
rupts are required. The module can transfer up to 2S0K I6-bit words per second in the
single cycle mode and up to SOOK I6-bit words per second in the burst mode. The module
also allows read-modify-restore operations.

The DRVII-J provides sixty-four input/outut data lines on a double-height module for
the LSI-ll bus. The DRVll-J also includes an advanced interrupt structure with bit in­
terruptability up to sixteen lines, programmable interrupt vectors, and program selection
of fixed or rotating interrupt priority within the DRVll-J. The DRVll-J bit interrupts
for real-time response make it especially useful for sensor I/O applications. It can also be

3-2

used as a general-purpose interface to special devices, and two DRVll-Js can be con­
nected back-to-back as a link between two LSI-ll buses.

DUVll-DA The DUVll-DA synchronous line interface module creates a data communication line
between the LSI-ll bus and a Bell 201 synchronous modem or equivalent. The module is
programmable to sync characters, character length (up to 8 bits), and parity selection.
The receiver logic accepts serial data for the LSI-II bus. The transmitter logic converts
the parallel LSI-II bus data into serial data for the transmission line. The interface logic
converts the TTL logic levels to the EIA voltage levels needed by the Bell 201 modems
and also controls the modem for half-duplex or full-duplex operation.

DZV11-B The DZV11-B is an asynchronous multiplexer interface module that interconnects the
LSI-II bus with up to four asynchronous serial data communications channels. The mod­
ule provides EIA interface voltage levels and data set control to permit dial-up (auto an­
swer) options with full-duplex modems such as Bell models 103, 113,212, or equivalent.
The DZVI1-B does not support half-duplex operations or the secondary transmit and re­
ceive operations that are available with some modems such as Bell 202. The module has
applications in data storage and collection systems where front-end systems interface to a
host computer and for use in a cluster controller for terminal applications.

IBV11-A The IBV11-A is an interface module that interconnects the LSI-II bus with the device
bus described in IEEE standard 488 1975, Digital Interface for Programmable Instru­
mentation. The IBV11-A makes a processor-controlled programmable device system pos­
sible. The module can accommodate up to fifteen IEEE-488 devices.

KWV11-C The KWV11-C is a programmable real-time clock/counter that provides a means of de­
termining time intervals or counting events. It can be used to generate interrupts to the
processor at predetermined intervals or to establish timing between input and output
events. It can also initialize the ADV11-C analog-to-digital converter by a clock counter
overflow or by firing a Schmitt trigger. The clock counter has a resolution of 16 bits and
can be driven by anyone of five crystal-controlled frequencies (100 Hz to I MHz), from
a line frequency input, or from a Schmitt trigger fired by an external input. The module
can operate in any of four programmable modes: single interval, repeated interval, exter­
nal event timing, and external event timing from zero base.

MCYII-D The MCYI1-D is an on-board battery-backed CMOS memory that supports 22-bit ad­
dressing. The MCVII-DA is an 8Kb module, and the MCV11-DC is a 32Kb module.
The module incorporates two nickel cadmium batteries for backup in case of a power
failure.

MRYI1-C The MRVll-C is a flexible, high-density ROM module used with the LSI-II bus. The
module contains sixteen 24-pin sockets which accept many of the user-supplied ROM
chips. The module accepts masked ROMs, fusible link PROMs, and ultraviolet erasable
PROMs. It accepts several densities of ROM chips up to and including 4K X 8 chips.
Using these high-density chips gives the module a total capacity of 64Kb .. The contents of
the module can be accessed directly or window-mapped. Direct access provides total ran­
dom access to all ROM locations on the module. Window-mapping provides two 2Kb
windows of memory address space to access 2Kb segments of the ROM array. The seg­
ments that are seen through each window can be changed by program control.

MSV11-D The MSVI1-D module has either 8K, 16K, or 32K X 16 bits of MOS memory. The
module has an on-board memory refresh and performs the necessary LSI-II bus cycles.
The memory addressing is selected by the user by configuring switch positions. The mod­
ule can use a battery backup system to maintain data when primary power is lost.

3-3

MXVI1-A The MXVII-A is a dual-height multifunction option module for the LSI-II bus. It con­
tains a read/write memory, provisions for read only memory, two asynchronous serial line
interfaces, and a 60 Hz clock signal derived from a crystal oscillator. Read/write memo­
ry is provided with either 8Kb or 32Kb (4K or 16K words). Two 24-pin sockets are pro­
vided for +5 V read only memories. lK X 8, 2K X 8, or 4K X 8 ROMs may be used.
The sockets may also be used for 256 words of bootstrap code. The two asynchronous
serial lines transmit and receive EIA-423 signal levels from 150 baud to 38.4K baud. 20
mA active or passive current loop operation at 110 baud may be used with the DLVll­
KA EIA to 20 mA converter option. The serial lines will not support the reader run func­
tion of the DLVll-KA option. The serial lines provide error indicator bits for overrun
error, frame error, and parity error, but do not have modem controls. Serial line 1 may be
configured to respond to a BREAK signal. The serial lines have signal level interrupt
logic. Serial line 1 and serial line 0 may be used with any of many standard types of serial
communication devices. The 60 Hz clock signal can be selected by a wirewrap jumper to
provide real-time clock interrupts on the bus.

RXV2I The RXV2I floppy disk option is a random access mass memory device that stores data
in fixed-length blocks on a preformatted, flexible diskette. Each diskette can store and
recover up to 5I2K 8-bit bytes of data. The RXV2I system is rack mountable and con­
sists of an interface module, an interface cable, and either a single or dual RX02 floppy
disk drive. The interface module converts the RX02 I/O bus to the LSI-II bus structure.
It controls the RX02 interrupts to the processor, decodes device addresses for register
selection, and handles the data exchange between the RX02 and the processor via DMA
transfers. Power for the interface module is provided by the LSI-ll bus.

3.3 UNSUPPORTED OPTIONS
A list of LSI-II bus options that are not guaranteed to be functionally compatible with the SBC-II/21
and are unsupported follows. Their diagnostics are not available.

AAVll-A
ADVII-A
BDVII-AA/BA
DAII-MS/QQ/QU
DAVII-A/B
DRLll-SN
DUVII-E/F
DUV25
DWII
DWVII-A
FEPTC-BA
FPFII
IPVI2
KDII-F
KDII-HA
KDFII-AB/ AC/BB
KDFII-BC/P
KPVll-A

3-4

LAVll
LPVII
MRVII-AA/BA/V A
MSVI1-E/P
NCVI1-A
REVII
RKVll
RLVll
RLV12
RXVII
TEVl1
TRVll
TSVll
VMVll-A
VK170
VSVII
VTVOI-A
VTV30-H

4.1 INTRODUCfION

CHAPTER 4
MACRO-ODT

The Macro-OOT is the KXTII-A2 option available to users of the SBC-llj21 single-board computer.
The option has a complete listing of the firmware and two 24-pin, 2K X 8 PROM chips that contain
the Macro-OOT firmware. The chips are installed on the module using the PROM sockets.

Macro-OOT allows the user to:

1. Examine and deposit data in memory or general registers.

2. Examine or change the processor status word (PSW).

3. Start the execution of the program.

4. Restart the execution of a halted program.

5. Bootstrap programs from a mass storage device (TU58 cassette, RXOI floppy disk, or RX02
floppy disk).

6. Run a diagnostic test for on-board devices.

4.2 INSTALLATION AND CONFIGURATION
The installation and configuration of the KXTll-A2 option is described in detail in Chapter 2 of this
User's Guide, and the user should refer to it for installation and startup instructions.

4.3 ENTRY CONDITIONS
Macro-OOT is entered:

1. On power-up.

2. Via the BREAK key on the console terminal.

3. On execution of a HALT instruction.

4. On assertion of the BHALT L signal on the LSI-ll bus.

5. When accessing nonexistent memory (Le., a bus time-out).

4.3.1 Macro-ODT Input Sequence
When entering Macro-OOT, the RBUF register is read using a OATI, and the character present in the
buffer is ignored. This is done so that erroneous characters or user program characters are not inter­
preted by Macro-OOT as commands.

4-1

The input sequence for Macro-ODT follows.

1. Read and ignore character in RBUF.

2. Output a <CR> <LF> to the terminal.

3. Output contents of PC (program counter R7) in six digits to terminal if ODT is entered via a
BREAK, BHALT, or HALT instruction or trying to fetch an instruction from nonexistent
memory. Output a '?' to the terminal if ODT is entered via a bus time-out.

4. Output a <CR> <LF> to the terminal.

5. Output the prompt character (@) to the terminal.

6. Enter a wait loop for terminal input. The done flag, bit 7 in RCSR, is tested using a DATI. If
it is zero, the test continues.

7. If RCSR bit 7 is a one, the low byte of RBUF is read using a DATI.

4.3.2 Macro-ODT Output Sequence
The output sequence for ODT follows.

1. Test XCSR bit 7 (done flag) using a DATI and, if it is a zero, continue testing.

2. If XCSR bit 7 is a one, write character to low byte of XBUF using a DATI followed by a
DATO (high byte is ignored by interface).

4.4 MACRO-ODT COMMANDS
Table 4-1 lists the Macro-ODT commands. The commands are a subset of ODT-ll and use the same
command character. The Macro-ODT internal states are listed in Table 4-2. Only specific characters
are recognized as valid inputs for each state; other inputs produce a '1' response.

The parity bit, bit 7, on all input characters is ignored by Macro-ODT, and if the input character is
echoed, the state of the parity is copied to the output buffer (XBUF). Output characters internally
generated by ODT (e.g., <CR» have the parity bit equal to zero. All input characters are echoed.
Only uppercase command characters are recognized.

NOTE
The use of ODT commands creates a dialogue be­
tween the user and the microcomputer. All the char­
acters typed by the user are underlined and the sys­
tem response is not underlined in the examples given
in this User's Guide.

4.4.1 / (ASCII 057) Slash
The 'j' command is used to open an on-board module address, LSI-II bus address, processor register,
or processor status word and must normally be preceded by other characters that specify a location. In
response to 'j', Macro-ODT prints the contents of the location (i.e., six characters) and a space (ASCII
40). After printing is complete, Macro-ODT waits for either new data for that location or a valid close
command «CR> or <LF». The space character is issued so that the location's contents and pos­
sible new contents entered by the user are legible on the terminal.

4-2

Command

Slash

Carriage return

Line feed

Internal register
designator

Processor status
word designator

Go

Proceed

Boot from device

Execute diagnostics

Table 4-1 Macro-ODT Commands

Symbol Function

/ Prints the contents of a specified location.

<CR> Closes an open location.

<LF> Closes an open location and opens the next location. This command
cannot be used with the general registers.

R Opens a specific processor register.

S Opens the PSW; must follow R command.

G Starts the execution of a program.

P Resumes the execution of a program.

D Loads and runs programs from floppy diskettes or TU58 cassettes.

x Runs SBC-ll/21 module verification diagnostics.

Example: @001000/12525<SPACE>

where:

@

001000

/

012525

<SPACE>

Macro-DDT prompt character.

octal location in the LSI-ll bus address space wanted by the user (leading
zeros are not required).

command to open and print contents of location.

contents of octal location 1000.

space character generated by Macro-DDT.

If the user issues a '/' immediately after a prompt character, the system prints? <CR> <LF> be­
cause a location is not open.

4-3

Table 4-2 Macro-ODT States and Valid Input Characters

Example of
Terminal

State Output Valid Input

1 @ 0-7
P
X
D

2 @R 0-7
S

3 @lOOOj 0-7
123456 <CR>

4 @Rlj123456 0-7
<CR>
<LF>

5 @1000 0-7
j
G

6 @Rl or@RS j

7 @lOOOj 0-7
123456 1000 <CR>

<LF>

8 @Rlj 0-7
123456 1000 <CR>

9* @DY 0
1
<CR>

10* @DX 0
1
<CR>

11* @DD 0
1
<CR>

*00 not enter zero or one followed by <CR>.

4-4

4.4.2 <CR> (ASCII 15) Carriage Return
The <CR> command is used to close an open location. If a location's contents are to be changed, the
user should precede the <CR> with the new data. If no change is needed, <CR> closes the location
without modifying its contents.

Example: @Rlj004321<SPACE> <CR> <CR> <LF>
@-

Processor register Rl was opened, and no change was needed so the user issued <CR>. In response to
the <CR>, Macro-ODT printed <CR> <LF>@.

Example: @Rlj004321<SPACE> 1234 <CR> <CR> <LF>
@-

In this example, the user wanted to change Rl. The new data, 1234, was entered before issuing the
<CR>. Macro-ODT deposited the new data into the open location and then printed <CR> <LF>
@. Macro-ODT echoes the <CR> entered by the user before it prints <CR> <LF> @.

Example: @1000jOI2525<SPACE> 1234 <CR> <CR> <LF>
@--

where:

first line = new data, 1234, entered into location 1000. The location is closed with <CR>.

4.4.3 <LF> (ASCII 12) Line Feed
The <LF> command is used to close an open location and then open the next contiguous location.
LSI-II bus addresses are incremented by two. If a processor register is open and an <LF> command
is issued, the register is closed and any data that was typed in before the <LF> will not enter the
register. ODT prints the error message <CR> ? <CR> <LF>. If the open location's contents are
to be changed, the new data should precede the <LF>. If no data is entered, the location is closed
without being modified.

Example: @1000/123456<SPACE> <LF> <CR> <LF>
@1002/054321<SPACE>

In this example, the user entered <LF> with no data preceding it. In response, Macro-ODT closed
location 1000 and then opened location 1002.

4.4.4 R (ASCII 122) Internal Register Designator
When followed by a register number, 0 to 7, or PSW designator, 'S', the R designator will open that
specific processor register.

Example: @ROj054321<SPACE>

or

@R7jOOOI23<SPACE> 456 <CR> <CR> <LF>
@-

If more than one character is typed (numeral or'S') after the 'R', Macro-ODT uses all the characters
as the register designator.

Example: @R00007 j000123<SPACE> <CR> <CR> <LF>
@

4-5

4.4.5 S (ASCII 123) Processor Status Word (PSW)
The S designator opens the PSW and must be used after the user has entered the R register designator.

Example: @R~j100377<SPACE> 0 <CR> <CR> <LF>
@R jOOOOl0<SPACE>

The T-bit filter prevents the user from setting the T-bit via Macro-ODT. The T-bit can be cleared by
any write to the PSW. When the filter is disabled, the T-bit can be set by loading the PSW to set bit 4
to a one. This is normally not considered desirable. The T-bit filter can be disabled by setting bit 15 of
location 167772 to a one.

The PRIORITY 7 filter prevents the user from setting a priority level of 7 via Ma.cro-ODT. Operation
at priority level 7 masks out (disables) the BREAK interrupt and makes it impossible to return to
Macro-ODT. This operation is normally unacceptable. If required, the PRIORITY 7 filter can be dis­
abled by setting bit 7 of location 167772 to a one. With the filter disabled, a priority level of 7 is se­
lected by writing 340 into the PSW.

4.4.6 G (ASCII 107) Go
The G command is used to start program execution at a location entered immediately before the 'G' in
the command string.

Example: @200G

The Macro-ODT sequence for a G command, after echoing the command character, follows.

1. Load R 7 (PC) with the entered data. (In the previous example, R 7 is equal to 200 and that is
where program execution starts.)

2. The PSW is cleared to zero.

3. The LSI-ll bus is initialized by the processor's asserting BINIT L for 17 f.LS minimum and
then negates BINIT L.

4. The user program starts execution at the location specified.

The user is warned that the G command clears the PSW to permit clock interrupts to be acknowledged.
Failure to load the address of the clock service routine into the clock vector address (100) may cause
unpredictable results.

4.4.7 P (ASCII 120) Proceed
The P command is used to restart execution of a program. No programmer visible machine state is
changed using this command.

Example: @f

Program execution restarts at the address pointed to by R 7. After 'P' is echoed, Macro-ODT exits, and
the program restarts execution.

4.4.8 DD, DX, DY Bootstraps
The D command is used to bootstrap a stand-alone program or XXDP+ diagnostics from an RXOI or
RX02 floppy diskette or a TU58 tape cassette. The next character after the D command determines the
type of device being booted. A numerical character, either zero or one, is used to specify a selected
drive or unit of the device being booted. If <CR> is typed instead of zero or one, unit 0 is assumed.

4-6

Examples: Boot unit 0 of TU58 device:

@DD<CR>

Boot unit 1 of RXOI device:

@DXl

Boot unit 0 of RX02 device:

@DYO

NOTE
Do not type both unit number and <CR>.

To boot a diskette drive, ODT expects the RXVII or RXV21 controller CSR address to be configured
for 177170. To boot the TU58, it must be connected to SLU2 and the baud rate set for 38,400.

Any error detected during the execution of a boot command will cause a halt at one of many addresses
in the boot section of the ROM, with the PC contents printed on the console. The actual addresses and
the specific errors they represent are given in the listing provided with the option.

Some errors, however, are not reported. If a TU58 is not connected to SLU2 or if baud rates are in­
compatible, no error indication is given after using the DD command, and the program waits forever.
This is also true when booting from floppy diskettes when the drive power is off. In either condition, the
user can use <BREAK> to return to ODT prompt level (@).

The D command performs the following operations.

1. If there is no RAM memory at address 0, the D command will cause a halt.

2. The command initializes the LSI-II bus by asserting BINIT L for 17 f,LS minimum.

3. It reads block 0 (the first 512 bytes) from the selected mass storage device into memory loca­
tions 000-777.

4. It reads location 0 and if it is 240, it loads Rl register with the CSR address of the booted
device, loads RO register with the selected unit or drive number, and jumps to location O.

5. If the content of location 0 is 260, the mass storage device contains a stand-alone program.
Macro-ODT interprets the contents of locations 2, 4, and 6 as a RADIX-50 encoded six char­
acter file name. Macro-ODT assumes that the mass storage device is an RT-ll file struc­
tured voiume and searches the directory of the volume for the file name provided by loca­
tions 2, 4, and 6. When the file is found, the complete file is loaded into contiguous memory
starting at location O. The RO register is loaded with the number of the unit or drive, and the
R 1 register is loaded with the CSR address of the booted device. The stack pointer (SP) is
loaded with the contents of location 42 and the program counter (PC) is loaded with the con­
tents of location 40. The program starts execution.

6. If the content of location 0 is not 240 or 260, the device does not contain a valid boot block.
The boot command is aborted, and the SBC-11/21 is initialized as if a power-up occurred.

4-7

4.4.9 X (ASCII 130) Diagnostics
After typing the letter 'X', there is a three-second delay before an octal number is displayed. This com­
mand is described in detail in Chapter 2.

4.5 INITIALIZATION
When it is necessary to reinitialize the system without removing power, the user enters 173000G from
the console in response to the '@' prompt. After a delay, the user types a carriage return to resynchro­
nize the terminal as shown in the following example.

Example: @173000G

After a delay of at least one second, the user types <CR> to resynchronize.

4.6 WARNINGS AND PROGRAMMING HINTS
The following warnings and programming hints are provided to help the user operate Macro-ODT.

4.6.1 Error Decoding
When an '@' appears unexpectedly, it is good practice for the user to examine the word at 167774. This
is an error word that indicates the cause of entry to ODT. A HALT instruction, BREAK, or trying to
fetch from nonexistent memory will appear as 100000. Other attempted bus transactions to nonexistent
memory will appear as 000200, or, if accessed by the stack pointer R6, as 000201.

4.6.2 ODT Stack Warning
While performing its various functions, Macro-ODT requires two words of user stack. It will push and
pop internal information there. Therefore, it is necessary that the user always provide two more words
than those necessary for the correct execution of the application program. If desirable, these two words
can be given back when the program is completely debugged and operating within its own ROMs with­
out ODT.

For correct program operation, R6 should always contain a valid even RAM memory address. Failure
to observe this rule will cause unpredictable results.

4.6.3 Addresses to A void
Because the firmware uses the top of the SBC-ll/21 on-board RAM as its scratchpad, the user should
not write to any address above 167642 unless specifically defined in this User's Guide.

The vector at 140 controls the BREAK interrupt. Changing locations 140 and 142 could result in the
inability to suspend program execution.

4.6.4 CPU Priority
When the PSW is set to 340, the BREAK key will have no effect and will not invoke Macro-ODT.
Running at a level 6 priority (PSW set to 300) is acceptable for most programming needs. This will
disable all interrupts except for BREAK.

4.6.5 Terminal Related Problems
Macro-ODT echoes every character typed in response to the '@' prompt. Some intelligent terminals
also respond to control characters as commands. The results may include loss of communication.

4.6.6 Spurious Halts
When the last word of an instruction is all zeros and causes a bus time-out, Macro-ODT will interpret it
as a HALT instruction and print the contents of PC on the terminal before issuing the '@' prompt.

4-8

4.6.7 Serial I/O Protocol
The Macro-ODT operates the serial line interface in full-duplex mode, and each character is echoed by
the microprocessor to the terminal. Programmed I/O methods are used instead of interrupts. When the
Macro-ODT firmware is busy printing a multicharacter message using the transmit side of the inter­
face, the firmware is not monitoring the receive side for incoming characters. Any characters coming in
at this time are lost. The interface may set the overrun error bit, but the Macro-ODT does not check
this bit, and those characters are not recognized. All peripherals communicating with the Macro-ODT
through this interface must observe this protocol.

4.6.8 Interrupt Vector Initialization
On power-up, Macro-ODT initializes the LTC interrupt vector (REVNT at 100) and the BREAK inter­
rupt vector (BKRQ at 140). Other vectors are not initialized and may contain erroneous data.

4-9

5.1 INTRODUCTION

CHAPTER 5
SYSTEM ARCHITECTURE

This chapter describes the architecture of the microprocessor, memory organization, and power-up
method. The microprocessor architecture describes the registers, hardware stack, interrupts, and direct
memory access (OMA) mechanism. The memory organization describes byte or word addressing and
memory mapping. The power-up procedure and initialization are also described.

5.2 MICROPROCESSOR ARCHITECTURE
The SBC-II /21 microprocessor executes a subset of the PDP-II instruction set. It has eight high-speed
general-purpose registers that are used as accumulators, address pointers, index registers, and for other
special functions. The microprocessor executes single and double operand instructions using either 16-
bit words or 8-bit bytes. The direct memory access (OMA) function transfers data directly from the
LSI-II bus to the on-board I/O devices and memory while the program continues to run.

5.2.1 Registers
As shown in Figure 5-1, the microprocessor contains a number of internal registers that are used for
many purposes. The registers are divided into two groups:

1. General
2. Status

5.2.1.1 General Registers - The microprocessor contains eight 16-bit general-purpose registers that
can perform many functions. These registers operate as accumulators, index registers, autoincrement
registers, autodecrement registers, or as stack pointers for temporary storage of data. Arithmetic oper­
ations can be performed from one general register to another, from one memory location or device reg­
ister to another, or between memory locations or a device register and a general register.

Registers R6 and R7 are dedicated. R6 is the stack pointer (SP) and contains the location (address) of
the last entry in the stack. Register R 7 is the processor program counter (PC) and contains the address
of the next instruction to be executed. It is normally used for addressing purposes only and not as an
accumulator.

5.2.1.2 Status Register - The PSW contains information on the current processor status. This informa­
tion includes the current processor priority, the condition codes describing the arithmetic or logic re-

. suIts of the last instruction, and an indicator for detecting the execution of an instruction to be trapped
during program debugging. Figure 5-1 shows the PSW format; Table 5-1 lists status word bit descrip­
tions. Certain instructions allow programmed control of condition code bits and loading and storing
(moving) the processor status. Not all instructions affect the condition codes in an obvious way. See
Chapter 7 for details on specific instructions.

5-1

PROCESSOR STATUS

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

RO

R1

R2
GENERAL REGISTERS

R3

R4

R5

STACK POINTER R6

PROGRAM COUNTER R7

MA·7829

Figure 5-1 Registers and Processor Status Word

5.2.2 Hardware Stack
The hardware stack is part of the basic design architecture of the SBC-ll /21. It is an area of memory
used by the programmer or by the operating system for temporary storage and linkage. It is controlled
on a LIFO (last in/first out) basis; items are recovered in the reverse of the order they were stored. The
stack starts at the highest location reserved for it (376 octal at power-up) and expands linearly down­
ward to a lower address as items are added to the stack.

It is not necessary to keep track of the actual locations into which data is being stacked. This is done
automatically through the use of the stack pointer. Register R6 always contains the memory address
where the last item is stored in the stack. Instructions associated with subroutine linkage and interrupt
service automatically use R6 as the hardware stack pointer. For this reason, R6 is often referred to as
the system SP. The hardware stack is organized in full word units only.

5.2.3 Interrupts
Interrupts are requests, made by peripheral devices, that cause the processor to temporarily suspend its
present program execution to service the requesting device. A device can interrupt the processor only
when its priority is higher than the processor priority indicated by PSW <7:5>, as shown in Table 5-2.

SBC-l1/21 supports a vectored interrupt structure with priority on four levels. In addition, it supports
two nonmaskable interrupts: power fail and HALT.

5-2

Table 5-1 Processor Status Word Bit Descriptions

Bits Name

15-08 NjA

07-05 Priority

04 Trace

03 Condition code N

02 Condition code Z

01 Condition code V

00 Condition code C

Microprocessor
Priority

Level 7
Level 6
Level 5
Level 4
Level 0-3

Description

These bits are not accessible to the programmer and contain no valid
information.

These bits define the current priority level of the microprocessor pro­
gram, and only interrupts with a higher priority are recognized by the
microprocessor. Table 5-2 describes the microprocessor interrupt levels
as functions of bits 5-7.

When set, this bit allows the microprocessor to trap to locations 14 and
16 after an instruction is executed. It can only be set by executing an
RTI or RTT instruction with the correct PSW on the stack. The trace
bit allows programs to be single stepped and is useful for debugging.

This bit is set when an instruction causes the result to be negative.

This bit is set when an instruction causes the result to be zero.

This bit is set when an instruction causes an overflow condition.

This bit is set when an instruction causes a carryout of the most signifi­
cant bit.

Table 5-2 PSW Interrupt Levels

Interrupt Levels PSWBits
Acknowledged 7 6 5

Nonmaskable interrupt 1 1 1
7 1 1 0
7,6 1 0 1
7,6,5 1 0 0
7,6,5,4 0 X X

5-3

Every interrupt except HALT is associated with an interrupt vector. The interrupt vector is a pair of
words: the next PC (address of that device's service routine) and the next PSW (priority with which the
routine must be executed). Upon interrupt, the current PC and PSW are saved on the stack, and the
new PC and PSW are loaded from the vector address.

Up to sixty-four vectors may reside in the first 256 memory locations (octal 374 is the highest vector
location). The vector address is provided by the interrupting device (external vector address) or gener­
ated internally by the microprocessor.

NOTE
The power fail interrupt uses interrupt vector ad­
dress 24. The HALT interrupt is not associated with
a vector. It pushes the PC and PSW on the stack
and immediately goes to the restart address with
PSW 340.

The SBC-11/21 has eleven interrupt sources. Nine of these are maskable; two are nonmaskable. An
interrupt request can occur at any time, but it is not acknowledged until the completion of the current
instruction. This lets the microprocessor execute a program until the interrupt occurs and then vector to
the service routine for the interrupt. After the service routine is completed, a return from interrupt
instruction (RTI) is executed. The microprocessor then pops the top two words, the original PC and
PSW, from the system stack, and the interrupted program is continued.

Table 5-3 lists the eleven interrupt sources with their priorities. For a device to be serviced, its priority
level must be higher than the current microprocessor level. When two devices with equal priority num­
bers request an interrupt at the same time, the device nearest to the top of the table is serviced first.

When an interrupt is requested by several LSI-ll bus devices at the same time, the device electrically
nearest to the SBC-1l/21 is serviced first.

5.3 DMA (DIRECT MEMORY ACCESS)
DMA allows the programmer to implement block transfers by specifying the direction of transfer, the
starting address in memory, the number of words, and any additional parameters that an external de­
vice requires. SBC-11/21 does not have an on-board DMA interface but it can support DMA transfers
for external devices via the LSI-ll bus interface. A typical device using the DMA mechanism is the
RX02 double-density floppy diskette. User-designed devices can also be connected to the SBC-11/21
DMA facility. See Chapter 9 for more information.

5.4 MEMORY ORGANIZATION
The SBC-11/21 memory uses on-board memory and LSI-ll bus memory. The memory map con­
figurations and the types of on-board memory chips are described in Chapter 2. The memory maps are
described in Figure 5-2. Addresses from 0 to 376 octal are reserved for vector locations, and addresses
from 60Kb to 64Kb are reserved for 1/0 devices.

The address space of the SBC-ll/21 module is 64Kb. A 16-bit word is two 8-bit bytes with bits 0-7
representing the low byte and bits 8-15 representing the high byte. Words are always addressed by even
numbers. The bytes are addressed by either even or odd numbers. The high bytes are stored in the odd
numbered locations, and the low bytes are stored in the even numbered locations.

5.S POWER-UP /POWER-DOWN FACILITY
The SBC-II 121 has facilities for an automatic program startup when power is turned on and for orderly
shutdown, without loss of data, when power is turned off or lost. This is done with a combination of
hardware features and software.

5-4

Table 5-3 SBC-H/21 Interrupts

Interrupt Control Priority Vector
Source Signal Level Address**

HALT -CTMER nonmaskable *

Power fail -PFAIL nonmaskable 24

LSI-II bus BKRQ 7 140
signal BHAL T

LSI-ll bus REVNT 6 100
signal BEVNT

SLU2 REC ROL2 5 120

SLU2XMIT XOL2 5 124

Parallel I lOB PBRQST 5 130

Parallel I/O A PARQST 5 134

SLUI REC ROLl 4 60

SLUI XMIT XOLI 4 64

LSI-ll bus IRQ4 4 Read from
signal BIRQ4 LSI-ll bus

* The microprocessor jumps directly to the restart address with a PSW priority level 7. (RESTART is loaded into
I?C and 340 into PSW.)

** All vectors defined in this table are internal vectors supplied by the microprocessor except for the BIRQ4 inter­
rupt which is read from the bus.

Hardware features:

• Two signal lines in the LSI-II bus, BOCOK Hand BPOK H, are used only for power­
up/power-down protocol. These signals are usually generated by the power supply.

• One signal line in the LSI-ll bus, BINIT L, that resets the system.

• The vectoring on interrupt facility of the SBC-ll /21.

• Battery backup connections.

Software features:

The programmer must provide power-up and power-down routines and store their addresses at the
jumper-selected start address for power-up and at location 24 for the power-down routine.

For a detailed description of the power-up/power-down protocol, see Chapter 9.

5-5

64KB

56KB

4SKB

40KB

32KB :-

24KB

16KB ,-

aKB ,-

OKB

MAPO MAP 1 MAP2

(NOTE 3)
64KB

(NOTE 3)

64KB

(NOTE 3)
2KB (NOTE 1)

4KB LOCAL RAM 4KB LOCAL RAM 4KB LOCAL RAM
(NOTE 2) (NOTE 2) (NOTE 2)

56KB 56KB

4SKB 4SKB

LSI-11 BUS LSI-11 BUS LSI-11 BUS

40KB 40KB

32KB 32KB

24KB 24KB

16KB
"

16KB

SKB SOCKET A

SKB SKB

4KB SOCKET A
aKB SOCKET B

4KB SOCKET B

OKB OKB

NOTES:
1. SOCKET SET A IS MAPPED OVER SOCKET SET B AND IS

THEREFORE LIMITED TO USING EITHER SOCKET A OR
SOCKET B, BUT NOT BOTH TOGETHER.

2. ADDRESSES 160000 THROUGH 160007 ARE ASSUMED TO
RESIDE ON THE LSI-11 BUS.

3. THIS SECTION CONTAINS THE LOCAL I/O ADDRESSES FOR
THE SLUs AND PPI. ALL UNASSIGNED ADDRESSES ARE
ASSUMED TO RESIDE ON THE LSI·11 BUS.

Figure 5-2 Memory Maps

5-6

MAP3

64KB

(NOTE 3)

4KB LOCAL RAM
(NOTE 2)

56KB

4SKB

LSI-11 BUS

40KB

32KB

24KB I· 16KB SOCKET A

16KB

SKB 16KB SOCKET B

OKB

MA·6643

6.1 INTRODUCTION

CHAPTER 6
PROGRAMMING INFORMATION

The SBC-11/21 has three on-board interfaces: one parallel I/O line and two serial I/O lines. These
interfaces contain many programmable features that allow the user to change their operating character­
istics. This chapter explains how this is done.

The SBC-ll/21 also has hardware that enables the microprocessor to operate in a controlled sequence
when the power is turned on and off. This hardware requires software to make it work. The basic prin­
ciples of this programming are described in Appendix C.

6.2 ASYNCHRONOUS SERIAL LINE UNITS
The two serial line units (SLUs), shown in Figure 6-1, provide the means of transferring data between
the microprocessor and two user connectors, Jl or 12. The user interfaces support the EIA RS-232C
standard and RS-423 protocol at baud rates from 300 to 38,400.

Each SLU has four addressable registers. These four registers are listed in Table 6-1 and illustrated in
Figure 6-2; their functions are described in Table 6-2, Table 6-3, Table 6-4, and Table 6-5. The registers
can be accessed by the microprocessor or any DMA bus master. SLU1, with the correct software han­
dling, can be used as a system console and is capable of initiating a hardware interrupt when BREAK is
detected. The SBC-ll/21 can be configured for the BREAK to cause a level 7 interrupt with an inter­
nal vector of 140, to enable the BHAL T interrupt, or to request a HALT trap to the restart address.
SLU2 provides three line time clocks at 50 Hz, 60 Hz, and 800 Hz, which can be wire-jumper con­
figured to enable the BEVNT level 6 interrupt. See Chapter 2 for details on how to configure the
SLUs.

6.2.1 Data Baud Rates
The serial line units transmit or receive data serially by bit and by character. Each character has ten
bits; a start bit, eight bits of data, and the stop bit. Split-speed operation of the receiver and transmitter
for the SLU is not supported, and the user cannot supply an external baud rate clock to the SLU. Dur­
ing power-up or reset, the outputs are disabled, and later, the baud rate defaults to 300.

Baud rates are programmable for 300, 600, 1,200, 2,400, 4,800, 9,600, 19,200 or 38,400 when bit 1 of
the transmitter control and status register (TCSR) is set to a one. The baud rate is then selected by
programming bits 5-3 of the TCSR.

The bits used for the baud rate selection are level sensitive and do not latch. Therefore, the software in
control of the TCSR must use bit set and bit reset type instructions after the baud rate is written into
the SLU. Each SLU provides an output at TTL levels to pin 1 of its connector (Jl or 12) at sixteen
times the baud rate selected for that SLU.

The Macro-DDT option has the autobaud feature that enables SLU1 to adjust itself to the terminal's
baud rate between 300 and 9,600 baud. The autobaud feature operates only when Macro-DDT is run­
ning on the system.

6-1

Jl OR J2

RCSR

f---
RECEIVER
CONTROL AND
STATUS

f
RDBR

~I--
RECEIVER

CIl
DATA BUFFER

cr::
0

i en
en

ROATH w
u 7 0 RECEIVER cr:: 8 C-
O GND
cr::
u
:2

TCSR

TRANSMITTER

t-- CONTROL AND
STATUS

1
TDBR

~ TRANSMITTER
DATA BUFFER

1 XDAT L

TRANSMITTER I 3

GND
2,4

MA·7207

Figure 6-1 Serial Line Unit (SLU) Interface

6-2

Table 6-t Serial Line Unit Register Addresses

Register Description

SLUI
RCSR Receiver control and status
RDBR Receiver data buffer
TCSR Transmitter control and status
TDBR Transmitter data buffer

SLU2
RCSR Receiver control and status
RDBR Receiver data buffer
TCSR Transmitter control and status
TDBR Transmitter data buffer

RECEIVER CONTROL AND STATUS REGISTER

15 14 13 12 11 10

I 0 I 0 I 0 I 0 I ~gi I 0

SLU 1 ADDRESS 177560
SLU 2 ADDRESS 176540

RECEIVER DATA BUFFER REGISTER
12 10

SLU 1 ADDRESS 177562
SLU 2 ADDRESS 176542

09

I 0 I

TRANSMITTER CONTROL AND STATUS REGISTER

08

0

09 08

SLU 1 ADDRESS 177564
SLU 2 ADDRESS 176544

TRANSMITTER DATA BUFFER REGISTER
15 14 13 12 11 10 09 08

Address

177560
177562
177564
177566

176540
176542
176544
176546

07 06 05 04 03

I ~g~EI ~ECV I 0 I 0 I 0 I

07

07 06 05 04 03

02

0 I

02

I 0 I 0 I 0 I 0 I 0 0
I

0

I
0 I : TRAN~MIT D:ATA B~FFER:

SLU 1 ADDRESS 177566
SLU 2 ADDRESS 176546

Figure 6-2 Serial Line Unit Register Bit Maps

6-3

AD2 ADt

0 0
0 1
1 0
1 1

0 0
0 1
1 0
1 1

01 00

0 0 I

01 00

MR·720B

Table 6-2 Receiver Control and Status Bit Descriptions

Bits Name Direction Function

12-15 Not Read Reserved for future use.
used only

11 Receiver Read This bit is set to a one by the start bit and is cleared to a zero by the
active only stop bit at th\! end of each byte. It is also cleared to a zero on the

power-up.

08-10 Not Read Reserved for future use.
used only

07 Receiver Read This bit is set to a one when the byte received is transferred into the
done only RCV data buffer. It is cleared to a zero when the RCV data buffer is

read. It is also cleared to a zero on power-up.

06 Receiver Read/ This bit is set to a one under program control. When set, it allows an
interrupt write interrupt request to be initiated whenever the receiver done bit is set.
enable It is cleared to a zero by reset, power-up,or under program control.

Refer to Chapter 2 for interrupt jumper configuration.

00-05 Not Read Reserved for future use.
used only

Table 6-3 Receiver Data Buffer Bit Descriptions

Bits Name Direction Function

15 Error Read The bit is set to a one when the overrun error or the framing error bit
only is set. It is cleared to a zero when the error producing condition is

removed.

14 Overrun Read The bit is set to a one when the received byte is transferred into the
error only RCV data buffer before the RCV done bit is cleared. The overrun

error indicates that the previous byte in the RCV data buffer was not
cleared prior to receiving a new byte. The bit is updated when a byte
is transferred into the RCV data buffer and cleared to a zero on
power-up.

13 Framing Read The bit is set to a one when the received character does not have a
error only valid stop bit and is transferred into the RCV data buffer. The bit is

cleared to a zero when a character with a valid stop bit is received
and is transferred into the RCV data buffer or on power-up.

12 Not Read Reserved for future use.
used only

6-4

Bits

11

08-10

00-07

Bits

08-15

07

06

03-05

Table 6-3 Receiver Data Buffer Bit Descriptions (Cont)

Name Direction Function

Received
break

Not
used

Received
data
buffer

Read
only

Read
only

Read
only

The bit is set to a one when the received signal goes from a mark to a
space and stays in the space condition for 11 bit times after serial
reception starts. The bit is cleared to a zero when the received signal
returns to the mark condition or on power-up.

Reserved for future use.

These eight bits represent the most recent byte received. These bits
are cleared to zero on power-up.

Table 6-4 Transmitter Control and Status Bit Descriptions

Name

Not
used

Transmitter
ready

Transmitter
interrupt
enable

Programmable *
baud rate
select

Direction Function

Read
only

Read
only

Read/
write

Read/
write

Reserved for future use.

The bit is set to a one when the XMIT data buffer is ready to
accept a byte. The bit is cleared to a zero by writing into the
XMIT data buffer. The bit is also set to a one on power-up.

This bit is set to a one under program control. When set, it
allows an interrupt request to be initiated whenever the trans­
mitter ready bit is set. The bit is cleared to a zero by reset,
power-up, or under program control.

The condition of these bits selects the baud rate under pro­
gram control provided the programmable baud rate select en­
able bit is set. The baud rates are selectable by setting these
bits as follows.

05 04 03 Baud Rate

0 0 0 300
0 0 1 600
0 1 0 1,200
0 1 1 2,400
I 0 0 4,800
1 0 1 9,600
1 1 0 19,200
1 1 1 38,400

When the programmable baud rate select enable bit is not
set, the baud rate defaults to 300.

6-5

Bits

02

01

00

Table 6-4 Transmitter Control and Status Bit Descriptions (Cont)

Name

Maintenance

Programmable*
baud rate
enable

Transmit
break

Direction Function

Read/
write

Read/
write

Read/
write

This bit is controlled by the program. When set to a one the
transmitter serial output is connected to the receiver serial in­
put and disconnects the external serial input. This bit is
cleared to a zero by INIT, power-up, or the program.

This bit is controlled by the program. When set to a one, bits
03-05 are used to determine the baud rate. When cleared to
a zero, the baud rate will be 300 baud. This bit is cleared to a
zero by INIT, power-up, or the program.

This bit is controlled by the program. When set to a one, the
serial output is forced into the space condition. This bit is
cleared by INIT, power-up, or the program.

* The transmitter programmable baud rate select and enable bits are level sensitive and are not latched. This requires that software
in control of the TCSR must use bit set and clear instructions to access the TCSR once the baud rate has been written into the
SLU.

Bits

08-15

00-07

Name

Not
used

Transmit
data
buffer

Table 6-5 Transmitter Data Buffer Bit Descriptions

Direction

Read
only

Read/write

Function

Reserved for future use.

These eight bits represent the next data byte to be transmit­
ted. These bits are cleared by power-up.

6-6

6.2.2 Interrupts
Each SLU provides both a receiver interrupt and a transmitter interrupt to request service from the on­
board microprocessor. Receiver and transmitter requests can be independently enabled by software.
The receiver interrupt request is enabled when the RCV interrupt enable (bit 6) of the receiver control
and status register (RCSR) is set to a one.

SLU2 has a higher interrupt priority, level 5, than SLU1 which has a level 4 interrupt priority. Within
each unit, the receiver has higher priority than the transmitter. SLU1 uses vector address 60 for the
receiver and 64 for the transmitter. SLU2 uses vector address 120 for the receiver and 124 for the
transmitter. These relationships are described in Table 5-3.

6.3 PROGRAMMING THE PARALLEL I/O INTERFACE
The parallel I/O interface, illustrated in Figure 6-3, provides a means of transferring data between the
microprocessor bus and the user interface connector 13. The interface has four addressable registers for
data and control. Table 6-6 describes these registers.

Port A and B registers are used only for data transfer to and from the user interface. Port C is used for
both data transfer and control. The control word register is used only for control of the parallel I/O
interface. The interface is programmable by using this register. In addition to software programming,
the parallel interface can also be programmed by hardware (see Chapter 2).

The parallel I/O interface is complex, and understanding all its capabilities requires considerable ef­
fort. However, efficient use can be made of the parallel I/0 using a subset of its capabilities. The fol­
lowing paragraphs are organized to help users find needed information. The flowchart in Figure 6-4
provides an overview of the following discussion on the parallel I/O interface, and helps guide users to
the paragraphs of specific interest to them.

6.3.1 Modes of Operation
The interface ports can operate in three basic modes that are selected by system software setting bits in
the control word register. The modes are defined as mode 0, 1, and 2 and define how the data is routed
through ports A and B.

NOTE
If the bidirectional buffers are being hardwired, care
must be taken to ensure that the wired direction
agrees with the programmed directions of ports A
and B. This is necessary to prevent driver output to
driver output connections, which could damage the
integrated circuits.

Table 6-6 Parallel I/O Register Addresses

Register Address Status

PortA 176200 Read/write
Port B 176202 Read/write
Port C 176204 Read/write
Control word 176206 Write only

6-7

CONTROL PCO

} INTERRUPTS

WORD
REGISTER

PC3

176206
USER CONNECTOR

174-;:;;44-' J3

PCO
9

PCl
3

4

10
PORT C

5

6 (f)

:J
co
a: 7

PC7 0
8 (f)

(f)
w
U
0 176204 a:
0.

A DATA PORTA (8 LI NES)

L --1 176200

GND
M6~_~JIR

r-I
B DATA

PORT B
I (8 LINES)

L .-J 176202

}?IR

I I
M50 M52 DELAY

+3 VDC ~---~ NETWORK I
L_.-J

MA-7512

Figure 6-3 Parallel I/O Interface

6-8

PARALLEL INTERFACE

6.3 PROGRAMMING THE PARALLEL I/O INTERFACE

TABLE 6-6 PARALLEL I/O REGISTER ADDRESSES

FIGURE 6-3 PARALLEL I/O INTERFACE

I
YOU ARE HERE

t
l

MODES OF OPERATION CONTROL WORD REGISTER

6.3.1 MODES OF OPERATION 6.3.2 CONTROL WORD REGISTER

6.3.1.1 PORT C REGISTER TABLE 6·17 CONTROL REGISTER MODE SELECTION BIT FUNCTIONS

6.3.2.1 MODE SELECTION

TABLE 6·18 CONTROL WORDS FOR MODE SELECTION

I I 6.3.2.2 SETTING BITS IN PORT C

TABLE 6·19 CONTROL REGISTER BIT SET/RESET FUNCTIONS
MODE 0 MODe 1 MODE 2 TABLE 6-20 INTERRUPT SET/RESET CONTROL WORDS

6.3.1.2 MODE 0 (BASIC INPUT/OUTPun 6.3.1.5 MODE 1 (STROBED INPUT/OUTPUT) 6.3.1.6 MODE 2 (STROBED BIDIRECTIONAL I/O)

TABLE 6·7 MODE 0 CONFIGURATION TABLE 6·10 PORT C CONTROL SIGNALS IN MODE 1 TABLE 6·14 PORT C CONTROL SIGNALS IN MODE 2

1 6.3.1.3 PoRT A AND B REGISTERS TABLE 6-11 COMBINATIONS OF MODE 1 TABLE 6-15 MODE 2 PORT C BIT DESCRIPTIONS

TABLE 6·8 MODE a PORT A OR B BIT DESCRIPTIONS TABLE 6·12 MODE 1 PORT C BIT DESCRIPTIONS TABLE 6·16 MODE 2 CONFIGURATION

6.3.1.4 PORT C REGISTER IN MODE 0 TABLE 6·13 MODE 1 CONFIGURATION FIGURE 6-8 MODE 2 PORT C BIT ASSIGNMENTS
INITIALIZATION

TABLE 6-9 MODE a PORT C BIT DESCRIPTIONS FIGURE 6·7 MODE 1 PORT C BIT ASSIGNMENTS

FIGURE 6·6 MODE a PORT C BIT ASSIGNMENTS
6.3.3 PARALLEL I/O INITIALIZATION

I
HANDSHAKING

6.3.4 PARALLEL I/O HANDSHAKING

TABLE 6·21 MODE 1 INPUT HANDSHAKING SIGNALS

TABLE 6-22 MODE 1 OUTPUT HANDSHAKING SIGNALS

TABLE 6-23 MODE 2 BIDIRECTIONAL HANDSHAKING SIGNALS

FIGURE 6-9 MODE 1 INPUT DATA HANDSHAKING SEQUENCE

FIGURE 6·10 MODE 1 STROBED INPUT TIMING

FIGURE 6-11 MODE 1 OUTPUT DATA HANDSHAKING SEQUENCE

FIGURE 6-12 MODE 1 PORT A STROBED OUTPUT TIMING

FIGURE 6-13 MODE 1 PORT B STROBED OUTPUT TIMING

FIGURE 6-14 MODE 2 PORT A BIDIRECTIONAL TIMING

Figure 6-4 Parallel I/O Flowchart

6.3.1.1 Port C Register - The bit assignments for the port C register are dependent on the mode se­
lected and the direction of ports A and B. This register provides the handshake controls to interface
between the 8255A-5 and the output connector. The handshake control bits are set/reset by using the
control word register which is described in Paragraph 6.3.2. The port C condition for the different
modes is described in the following paragraphs that explain the modes.

6.3.1.2 Mode 0 Basic Input/Output - Mode 0 provides simple input and output of either port A or port
B or both as described in Table 6-7. The data is read from the port if programmed as an input or written
to the port if programmed as an output with no handshaking requirements. The port A and port B bidi­
rectional buffers may be hardwired as described in Chapter 2. They may also be program controlled by
port C bits 4 and 6 if dynamic change of the port direction is wanted. In this mode, the outputs are
latched but the inputs are not.

Table 6-7 Mode 0 Configuration

PPI To Act To Act Direction Control
Element as Input as Output via Port C

PortA M52 to M50 M52 to M51 M52 to M54 orM58

Port B M49 to M50 M49 to M51 M49 to M54 or M58

PC7 Never an input Always an output

PC6 M54 to M53 Never an output

PC5 Never an input Always an output

PC4 M58 to M65 N ever an external
output

PC3 Never an input Interrupt A
(vector 134)
Always an output

PC2 Always an input Never an output

PCI Never an input Always an output

PCO Never an input Interrupt B
(vector 130)
Always an output

6-10

6.3.1.3 Port A and B Registers - The bit assignments for the port A and B registers are shown in
Figure 6-5 and described in Table 6-8. The port A and B registers are used as data buffers for all modes
of operation.

6.3.1.4 Port C Register in Mode 0 - Ports A and B use no handshaking signals, and some port Clines
can be used as input/output data lines. The bit assignments are shown in Figure 6-6 and described in
Table 6-9. When PCO and PC3 lines are not used as interrupt requests, they should be cleared by the
control word to prevent false interrupts.

6.3.1.5 Mode 1 (Strobed Input/Output) - In mode 1, the lines on port C generate or accept signals
from the user interface that control the transfer of data through ports A and B. Port C bits 0-3 (lower
nibble) are used with port B, and bits 4-7 (upper nibble) are used with port A. These signals are known
as handshaking signals. The basic functions of these control signals are defined in Table 6-10 followed
by a more detailed description of the handshake protocol.

Table 6-11 describes the four input/output combinations of ports A and B usable in mode 1. The port C
bit assignments used in mode 1 are illustrated in Figure 6-7 and described in Table 6-12. Table 6-13
links operation of mode 1 to the jumper configurations discussed in Chapter 2.

Bits

08-15

00-07

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Name

Undefined

Port data

PORT DATA
MR-7211

Figure 6-5 Mode 0 Port A or B Bit Assignments

Table 6-8 Mode 0 Port A or B Bit Descriptions

Direction

Read/write

Function

Not valid if a read is performed on the entire word.

Data to output or input data to be read, depending on the port
direction.

6-11

15 14 13 12 11 10 09

UNDEFINED

MR-7212

Figure 6-6 Mode 0 Port C Bit Assignments

Table 6-9 Mode 0 Port C Bit Descriptions

Bits Name Direction Function

08-15 Undefined Not valid if a read is performed on the entire word.

07 PC7 Read/write * Output bit, drives the LED.

06 PC6 Read/write* If port C upper is defined as input and M54 is connected to
M53, it is an input bit. If port C upper is defined as output
and M54 is connected to M52 (M49), it is output that con-
trols the buffer direction for port A (port B). A one sets the
buffer for input and a zero for output.

05 PC5 Read/write* Same as PC7, no LED.

04 PC4 Read/write* If port C upper is defined as input and M58 is connected to
M65, it is an input bit. If port C upper is defined as output
and M58 is connected to M49 (M52), it is output that con-
trols the buffer direction for port B (port A). A one sets the
buffer for input and a zero for output.

03 PC3 Not used Not valid

02 PC2 Read only Input bit

00-01 PCO-PCl Not used Not valid

* Bit is written by using the control word bit set/reset function explained in Paragraph 6.3.2.

6-12

Signal

Strobe input

Input buffer full

Interrupt request
(Input mode)

Interrupt enable
(Input mode)

Output buffer full

Acknowledge input

Interrupt request
(Output mode)

Interrupt enable
(Output mode)

Table 6-10 Port C Control Signals in Mode 1

Abbreviated/
Port C Bit

STBA/PC4
STBB/PC2

IBFA/PC5
IBFB/PCI

INTRA/PC3
INTRB/PCa

INTEA/PC4
INTEB/PC2

OBFA/PC7
OBFB/PCI

ACKA/PC6
ACKB/PC2

INTRA/PC3
INTRB/PCa

INTEA/PC6
INTEB/PC2

Function

A low on this input loads user data into the input latch.

A high on this output acknowledges that the data has
been loaded into the input latch. Set by STB and reset by
the program reading the input latch.

A high on this output can interrupt the CPU when an in­
put device strobes its data into the port.

Enables setting of INTRA and INTRB. Program con­
trolled by PC4 or PC2.

This output goes low to tell the user interface that the
CPU has written data to the port. Reset by ACK input
going low.

A low on this input tells the processor that the user's de­
vice accepted the data from A or B.

A high on this output can interrupt the CPU when an
output device has accepted data transmitted by the
CPU. Set by ACK and reset when new data is written to
the port.

Enables setting of INTR. Program controlled by PC6 or
PC2.

6-13

Table 6-11 Combinations of Mode 1

Port A Input Port A Output Ports Ports
Port C Bit with with A&B A&B
Functions Port B Output Port B Input Output Input

STBA PC4 NjA NjA PC4

STBB NjA PC2 NjA PC2

IBFA PC5 NjA NjA PC5

IBFB NjA PC1 NjA PC1

INTRA PC3 PC3 PC3 PC3

INTRB PCO PCO PCO PCO

OBFA NjA PC7 PC7 NjA

OBFB PC1 NjA PC1 NjA

ACKA NjA PC6 PC6 NjA

ACKB PC2 NjA PC2 NjA

Other port C outputs PC7 NjA PC5 NjA
(controls LED)

Other port C inputs NjA PC4 NjA PC6,7

Control Word

DO (Direction of PCO-3) X X X X
D 1 (Direction of port B) 0 1 0 1
D2 (Mode of port B) 1 1 1 1
D3 (Direction of PC4-7) 0 1 1 0
D4 (Direction of port A) 1 0 0 1
D5 Port A mode 1 1 1 1
D6 Port A mode 0 0 0 0
D7 Mode set enable 1 1 1 1

6-14

Bits

08-15

07

06

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

: UNDE:FINED: I/O I/O I'BFA I I'NTRAI

I
I'BFB I

INTEA INTE13 INTRB
A AND B BOTH INPUTS (STBA) (STB13)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I : : UNDE~INED: 10BFAI I/O I'NTRAI

I
10BFBI

INTEA INTEB INTRB
A AND B BOTH OUTPUTS (ACKA) (ACKB)

MA·7213

Figure 6-7 Mode 1 Port C Bit Assignments

Name

Undefined

PC7

OBFA**

PC6

INTEA

Table 6-12 Mode 1 Port C Bit Descriptions

Direction

Read/write*

Read only

Read/write*

Read/write *

Function

Not valid if a read is performed on the entire word.

If port A mode 1 input:

If port C bits 04-07 are defined as output, this bit is an out­
put bit and controls the LED. A zero turns the LED on, and a
one turns it off.

Unused if port C bits 04-07 are defined as input.

If port A mode 1 output:

OBF A goes low to indicate that data has been written into the
output buffer by the processor. This bit is set when the
ACKA (PC6, M54 to M53) input goes low indicating that
the external device has accepted the output data. OBFA is
present on PC7 to the external device.

If port A mode 1 input:

If port C bits 04-07 are defined as input and M54 is con­
nected to M53, it is an input bit. If port C bits 04-07 are
defined as output and M49 is connected to M54, it is an out­
put that controls the buffer direction for port B. A one sets
the buffer for input, and a zero sets the buffer for output.

If port A mode 1 output:

When set, INTEA enables INTRA to interrupt the
SBC-ll/21 when output data has been accepted by the exter­
nal device.

6-15

Bits Name

ACKA

05 IBFA

PC5

04 INTEA

PC4

03 INTRA

Table 6-12 Mode 1 Port C Bit Descriptions (Cont)

Direction

Read only

Read/write*

Read/write*

Read/write *

Read only

Function

When M54 is connected to M53, an external signal acknowl­
edging the receipt of data acts as INTEA.

If port A mode 1 input:

IBF A indicates that the input data has been latched for port
A. It is set by the STBA input (PC4, M58 to M65) going low
and is reset by the processor reading the port data. This signal
is present on PC5 to the external device.

If port A mode 1 output:

If port C upper is defined as output, it is an output bit. If port
C upper is defined as input, it is unused.

If port A mode 1 input:

If set, INTEA will allow INTRA to interrupt the SBC-ll /21
whenever the input buffer is full.

If port A mode 1 output:

If port C bits 04-07 are defined as output and M49 is con­
nected to M58, this bit is output that controls the direction of
the port B buffer. A one sets the buffer for input and a zero
sets it for output. If port C bits 04-07 are defined as input
and M58 is connected to M65, it is an input bit and is inter­
preted as STBA (input strobe).

If port A mode 1 input:

A one indicates that port A has valid input data. It is set by
STBA (PC4, M58 to M65) being pulsed low and is reset by
the processor reading the port data. INTRA is enabled by
INTEA being a one and disabled by INTEA being a zero.

If port A mode 1 output:

A one indicates that port A is ready to accept new output
data. It is set by ACKA (PC6, M54 to M53) being pulsed low
and reset by the processor writing new output data to the
port. Enabled and disabled as above.

When enabled, INTRA interrupts the processor and has a
vector of 134.

This signal is also an output to the external device on line
PC3.

6-16

Bits Name

02 INTEB

01 IBFB

OBFB**

00 INTRB

Table 6-12 Mode 1 Port C Bit Descriptions (Cont)

Direction

Read/write*

Read only

Read only

Read only

Function

When set, INTEB will allow INTRB to interrupt the
SBC-ll/21 to request service.

If port B mode 1 input:

IBFB indicates input data has been latched for port B when a
one. It is set by the STBB (PC2) being low and is reset by the
processor reading the port data. This signal is present on PC 1
to the external device.

If port B mode 1 output:

OBFB goes low to indicate that the processor has written data
to the port. This bit is set by ACKB (PC2) going low, indicat-
ing the external device has accepted the output data. This sig-
nal is present on PC 1 to the external device.

If port B mode 1 input:

A one indicates port B has valid input data. It is set by STBB
(PC2) being pulsed low and is reset by the processor reading
the port data. INTRB is enabled when INTEB is one and dis-
abled when it is zero.

If port B mode 1 output:

A one indicates that the port is ready to accept new output
data. It is set by ACKB (PC2) being pulsed low and reset by
the processor writing new output data to the port. Enabled
and disabled as above.

This signal is also an output to the external device on PCO.

*Bit is written by using the control word bit set/reset function described in Paragraph 6.3.2.

**If OBF is asserted low and a read or write access is made to the port by the processor before an ACK strobe is sent by the
external device, the aBF line for the accessed port will negate during the assertion of the read or write to the port and become
reasserted when the read or write operation is complete.

6-17

Table 6-13 Mode 1 Configuration

PPI Input Output Program Control
Element Conditions Conditions via Port C

PortA MS2 to MSO MS2 to MSI N/A

Port B M49 to MSO M49 to MSI M49 to MS4 or MS8

PC7 Never an input Output buffer A full

PC6 MS3 toMS4 Never an external
(Acknowledge A)* output

PCS Never an input Input buffer A full

PC4 M6S to MS8 N ever an external
(Strobe A) output

PC3 N ever an input Interrupt A
(vector 134)

PC2 Strobe B Never an output
in input mode
Acknowledge B in
output mode

PCl Never an input Buffer B full on
input or output

PCO Never an input Interrupt B
(vector 130)

*User's hardware acknowledges receipt of data output by port A.

6.3.1.6 Mode 2 (Strobed Bidirectional I/O) - Mode 2 implements communication with a user device
over a single 8-bit bus for both transmitting and receiving data. Handshaking and interrupt signals are
used as they are in mode 1.

Mode 2 is used with port A only and five control lines on port C. Both inputs and outputs are latched.
When port A is operating in this mode, the port B bidirectional buffers cannot be operated under pro­
gram control because PC4 and PC6 are being used. Port B can operate in either mode 0 or mode 1 but
the buffers must be hardwired. PCO--PC2 are defined by port B conditions for mode 1 and are available
as I/O lines when port B is in mode o.

Control signals are defined in Table 6-14. The port C bit assignments as u~ed in mode 2 are illustrated
in Figure 6-8 and described in Table 6-1S. Table 6-16 links operation of mode 2 to the jumper con­
figurations discussed in Chapter 2.

6-18

Signal

Interrupt request

Output buffer full

Acknowledge

Interrupt enable

Strobe input

Input buffer full

Interrupt enable

Table 6-14 Port C Control Signals in Mode 2

Abbreviated/
Port C Bit

INTRA/PC3

OBFA/PC7

INTEAl/PC6

STBA/PC4

IBFA/PC5

INTEA2/PC4

Function

A high on this output can interrupt the CPU for both
input and output operations.

This output goes low to indicate that the CPU has writ­
ten data to port A.

A low on this input enables the output tristate buffers of
port A to send out the data. Otherwise, that buffer is in
the high impedance state.

Enables INTR when OBF is true. Controlled by bit
set/reset of PC6.

A low on this input loads data into the input latch.

A high on this output indicates that data has been
loaded into the input latch.

Enables INTR when IBF is true. Controlled by bit
set/reset of PC4.

6-19

15 14 13

Bits Name

08-15 Undefined

07 OBFA

06 INTEAl

05 IBFA**

04 INTEA2

03 INTRA

02-00 PCO-PC2

12 11 10 09 08 07 06 05 04 03 02 01 00

: UNDE:FINED: !OBFA! !IBFA ! !INTRA!

I I
INTEA 1 INTEA2
(ACKA) (STBA)

MR·7214

Figure 6-8 Mode 2 Port C Bit Assignments

Table 6-15 Mode 2 Port C Bit Descriptions

Direction

Read only

Read/write *

Read only

Read/write*

Read only

Function

Not valid if a read is done on the entire word.

Will go low to indicate that the processor has written output
data to the port. It goes high when ACKA (PC6, M54 to
M53) goes low indicating the external device has accepted the
data. This signal is output on PC7 to the external device.

When this bit is set, it allows an interrupt INTRA when the
output buffer is ready to accept new data.

IBF A indicates that input data has been latched when it is a
one. This bit is reset when the processor reads the input data.
This signal is output on PC5 to the external device.

When this bit is set, it allows an'interrupt INTRA when the
input buffer is full.

A high on this bit indicates that the port is requesting service
of the processor. This signal is output on PC3 to the external
device.

These bits are defined by port B mode selection.

* Bit is written by using the control word bit set/reset function described in Paragraph 6.3.2.

** When using port A in mode 2 operation, the software must clear the input buffer of port A if the input buffer full flag (IBFA)
is set before it performs the read during an intended write to ensure that the handshake lines and port flags are not set out of
sequence.

6-20

Table 6-16 Mode 2 Configuration

PPI Input Output
Element Conditions Conditions

PortA Bidirectional bus M52 to M54 to M53

Port B Hardwired only Hardwired only

PC7 Never an input Output buffer A full

PC6 Acknowledge A Never an output

PC5 Never an input Input buffer A full

PC4 Strobe A (M65 to M58) Never an output

PC3 Never an input Interrupt A (vector 134)

PC2 Always an input Never an output

PCI Never an input Always an output

pca Never an input Always an output

6-21

6.3.2 Control Word Register
The control word register controls the operation of the parallel interface. If bit 7 is set, the contents of
the register determine the mode of operation and the input/output direction of the ports. If bit 7 is
cleared, the contents of the register set/reset the port C register bits. The functions of the register bits
are described in Table 6-17 and are selected by the state of the bit.

6.3.2.1 Mode Selection - The user determines the mode of operation for the ports and defines them as
inputs, outputs, or bidirectional. The user then must ensure that the bidirectional buffers are configured
(see Chapter 2) to match the software requirements. Table 6-18 lists all the control words available for
the control word register. The user selects the control word that matches the requirements and loads it
into the register. The register is defined as write only; reading the register results in erroneous data.

6.3.2.2 Setting Bits in Port C - The control word register is also used to set or reset the port C register
bits. The control word bit functions are described in Table 6-19. To set a bit, the register is loaded with
bit 7 cleared, bits 1-3 equal to the bit number being set, and bit 0 set. To reset the same bit, bit 0 is
cleared. The bit set/reset can be used to enable or disable the port A and port B interrupts for the SBC-
11/21. The control words used to enable or disable the interrupts are listed in Table 6-20.

Table 6-17 Control Register Mode Selection Bit Functions

Bits Bit Set Bit Reset

08-15 Unused Unused

07 Always set Always set

06 Port A mode 2 Port A mode 0 or 1

05 Port A mode 1 Port A mode 0

04 Port A input Port A output

03 Port C bits 04 and 06 Port C bits 04-07
inputs outputs

02 Port B mode 1 Port B mode 0

01 Port B input Port B output

00 Port C bit 02 input Port C bits 00, 01,
and 03 outputs

6-22

Table 6-18 Control Words for Mode Selection

PortB PortB PortB PortB PortC PortC
Mode 0 Mode 0 Mode 1 Mode 1
IN OUT IN OUT PC4,PC6 PC5,PC7

PortA 233 231 237 235 Input
Mode 0 IN

233 221 227 225 Output

PortA 213 211 217 215 Input
Mode 0 OUT

203 201 207 205 Output

PortA 273 271 277 275 Input
Mode 1 IN

263 261 267 265 Output

PortA 253 251 257 255 Input
Mode lOUT

243 241 247 245 Output

Port A 3X3 3Xl 3X7 3X5 *
Mode 2

*Port C unavailable, used for handshaking.
X = Do not care condition.

6-23

Table 6-19 Control Register Bit Set/Reset Functions

Bits Function

08-15 Not used

07 Always reset

06-04 Not used

03-01 These bits select the port C bit that is to be set or reset as follows.

Bit 03 02 01

PCO 0 0 0
PCl o· 0 1
PC2 0 1 0
PC3 0 1 1
PC4 1 0 0
PC5 1 0 1
PC6 1 1 0
PC7 1 1 1

00 This bit is set to set the selected bit or is cleared to reset the selected bit of port C.

Table 6-20 Interrupt Set/Reset Control Words

INTRA INTRB
Mode Direction Enable Disable Enable Disable

1 Input 011 010 005 004

1 Output 015 014 005 004

2 Input 011 010 None* None*

2 Output 015 014 None* None*

·Port B does not function in the bidirectional mode 2.

6-24

6.3.3 Parallel I/O Initialization
During power-up or the execution of a RESET instruction, the port C data lines are driven high and the
LED (driven by bit 7 of port C) is turned off. If the bidirectional buffers of ports A and B are hard­
wired, the directions are not changed, and the data lines are driven high if the buffer is configured as an
output. If the bidirectional buffers of ports A and B are program controlled by port C, the data lines
will go to the input state.

6.3.4 Parallel I/O Handshaking
The parallel I/O can operate in either mode 0, 1, or 2 to transfer data into or out of the SBC-ll/2l.
The mode 0 data transfers do not require any handshaking control signals. Tqe mode 0 input data is not
latched, and data should be available on the I/O connector at the same time as the read strobe enables
the 8255A-5. The mode 0 output data is latched, and data is valid at the I/O connector 362 ns after the
trailing edge of the write strobe to the 8255A-5.

The handshaking signals that pass across the user interface are detailed as follows. Mode 1 operation
requires the handshaking control signals; these are dependent on defining the ports as inputs or outputs.
Mode 1 input signals are listed in Table 6-21, and the handshaking function is shown in Figure 6-9.
Mode 1 input timing is described in Figure 6-10. Mode 1 output signals are listed in Table 6-22, and the
handshaking function is shown in Figure 6-11. Mode 1 output timing is described for port A in Figure 6-
12, and mode 1 output timing is described for port B in Figure 6-13. Mode 2 operation allows port A to
be bidirectional. The handshaking signals are listed in Table 6-23, and mode 2 timing is described in
Figure 6-14. When port A operates in mode 2, port B can operate only in mode 0 or mode 1.

Signal Name

STB (A or B)
Port A - PC4
Port B - PC2

IBF (A or B)
by Port A - PC5
Port B - PCI

INTR (A or B)
to Port A - PC3
Port B - PCO

Table 6-21 Mode 1 Input Handshaking Signals

Function

Strobe input - This signal is asserted low by the external device and loads data
into the SBC-ll/21 input port latch. It must be asserted low for 525 ns
minimum.

Input buffer full - This signal is asserted by the SBC-ll/21 in response to an
assertion of STB to notify the interface that data was loaded into the input latch.

Interrupt request - This signal can be used to generate an interrupt to the micro­
processor. The bitset/bitreset commands must be used to enable/disable the
INTE bit for each port. Interrupts will be generated either when STB is negated
with IBF asserted, or when ACK is negated with OBF asserted.

6-25

SBC-ll/21 EXTERNAL DEVICE

REQUEST DATA
• IBF UNASSERTED ________ .

~SENDDATA
• PLACE DATA ON I/O BUS
• ASSE RTS STB

ACCEPTS DATA
• ASSERTS IBF

REQUEST INTERRUPT IF INTE SET /

ACKNOWLEDGES ACCEPTED DATA
• UNASSERTED STB

• ASSERT INTR /
• PROCESSOR READS DATA PORT
• NEGATE INTR IF ASSERTED
• NEGATE IBF

MR~7216

STB

IBF

INTR

INPUT DATA
I/O BUS

PORT DATA
READ

Figure 6-9 Mode 1 Input Data Handshaking Sequence

1--512nSMIN~
--~ ~I'------------------------------

-1 312ns L
"I MIN I"

I
I ,
,
I
I
~ 312ns MAX j.-

, r-------r---~
I

I 12ns I 192ns I
, MIN, MIN I

," "I- "I -------< VALID DATA)- - --

-' 312ns l­
I MAX

Figure 6-10 Mode 1 Strobed Input Timing

6-26

MR-7217

Signal Name

OBF (A or B)
Port A - PC7
Port B - PCI

ACK (A or B)
Port A - PC6
Port B - PC2

INTR (A or B)
to Port A - PC3
Port B - PCO

Table 6-22 Mode 1 Output Handshaking Signals

Function

Output buffer full - This output is asserted low to indicate that the microproces­
sor has written data into the specified port latches.

Acknowledge input - This signal is asserted low by the external device to indicate
it has accepted the latched output data from the specified port. .

Interrupt request - This signal can be used to generate an interrupt to the micro­
processor when the external device has received the data and INTE is set and
ACK is negated.

SBC·11/21 EXTERNAL DEVICE

OUTPUT DATA
• OUTPUTS DATA ON I/O BUS
• ASSERTS OBF

"" ACCEPT DATA ~ • ASSE RTS ACK
________ • READS DATA

OUTPUT COMPLETE
• NEGATESOBF ~

~ ACKNOWLEDGE? RECEIVED DATA

GENERATE INTERRUPT
IF INTE SET

• ASSERTS INTR
NOTES:

~
• UNASSERTSACK

1. IF OBF IS ASSERTED LOW AND A READ OR WRITE TO THE PORT
BY THE SBC-11/21 PROCESSOR OCCURS BEFORE AN ACK STROBE IS
SENT BY THE EXTERNAL DEVICE, THE OBF LINE FOR THE ACCESSED
PORT WILL NEGATE DURING THE ASSERTION OF THE READ OR WRITE
TO THE PORT AND THEN BECOME REASSERTED.

2. OBF WILL ASSERT ON THE READ PORTION OF EVERY READ BEFORE
INTENDED WRITE TO PORT B, AND THE OBF B WILL NEGATE AND REASSERT
ON THE WRITE STROBE'. IF INTEB IS SET AND INTRB IS ASSERTED,lNTRa
WILL NEGATE ON THE READ aEFORE THE INTENDED WRITE TO PORT B
(SEE FIGURE 6-13.)

3. OBF WILL ASSERT ON THE WRITE PORTION OF EVERY READ BEFORE
INTENDED WRITE TO PORT A. IF INTEA IS SET AND INTRA IS ASSERTED,
INTRA WILL NEGATE ON THE WRITE PORTION OF THE READ BEFORE
INTENDED WRITE TO PORT A.

MR-7218

Figure 6-11 Mode 1 Output Data Handshaking Sequence

6-27

WRITE
PORT DATA ____ -!

~----~z !~--------

14 962n5 MAX '-'I
INTRA -------------------T""il I I ~

1 662n5 1 1 375n5 I I

:4 MAX. .. MAX .1 1

OBFA-----------rl---i~~

1 1 1 1
ACKA-----------rl--~Z ~~

1 362n5 1 ~ 375n5 :
MAX I MAX 1
~ ~

OUTPUT DATA ------------......,W
A LATCHED OUTPUT DATA 1/0 BUS ____________J ••

MR-7219

Figure 6-12 Mode 1 Port A Strobed Output Timing

WR------------~

RD

INTRB -~r-"'1

662n5 1
I MAX

.. ~
:375n~1
MAX 1 r-

I
1 1.--.1 375n5

ACKB-----------------------~--------I ~AX
1 L....J

362n5~
MAX I I LATCHED OUTPUT

DATA
OUTPUTDATA _________________________ --J~r----~~~---

1/0 BUS ..

NOTE:
1. OBF WILL ASSERT ON THE READ PORTION OF EVERY READ BEFORE

INTENDED WRITE TO PORT B AND THE OBF WILL NEGATE AND REASSERT
ON THE WRITE STROBE. IF INTEB IS SET A~D INTRB IS ASSERTED, INTRB
WILL NEGATE ON THE READ BEFORE THE INTENDED WRITE TO PORT B.

MR·7220

Figure 6-13 Mode 1 Port B Strobed Output Timing

6-28

Signal Name

STB (PC4)

IBF (PC5)*

INTR (PC3)

OBF (PC7)

ACK (PC6)**

Table 6-23 Mode 2 Bidirectional Handshaking Signals

Function

Strobe input - This signal is asserted low by the external device and strobes
data into port A.

Input buffer full- This signal is asserted when the microprocessor has accepted
STB strobe.

Interrupt request - This signal can be used to generate an interrupt to the mi­
croprocessor when the external device is demanding service.

Output buffer full - This output is asserted to indicate that the microprocessor
has written data into the output port latches.

Acknowledge input - This signal is asserted low by the external device to in­
dicate it has taken data from the output port latches. It controls the DIR pin of
the port A buffer.

* Because every write is preceded by a read, the contents of the input buffer should be saved if IBF A is asserted prior to
writing port A mode 2 data.

** When mode 2 is configured, PC6 (ACK) is jumpered to the port A direction control pin through a rising edge delay
circuit. Hence, when PC6 is negated, the rising edge is delayed by 250 ns minimum. This means that the buffer will be
driving data out of the connector 250 ns minimum after the user interface negates ACK.

WRITE --,
PORT A 1.... ----I 375ns

1 .. 622ns MAX .. ,

I I
' .. MAX .. ' ,

INTR 11--____
I 325ns

___________ -;~~M_I_N ______ _

ACK 1 I I
I 525ns I ~

IBF

DATA
110 BUS

READ
PORTA

MIN

I" "I
I

~~~:~ .. ~·Ir-,-----~--------~ 
I 12ns I 192ns I !325ns, I 312nsJ-

I .. MIN.I .. MIN .. 1 ,~A~I OUTPUT I~AX.I 
DATA I 

-'( INPUT DATA 'f .J - { ____ >r-- i 

I 20ns MIN I 
14 .H 
1500ns MAX ... __ _ 

MR·7221 

Figure 6-14 Mode 2 Port A Bidirectional Timing 

6-29 





CHAPTER 7 • 
ADDRESSING MODES AND INSTRUCTION SET 

7.1 INTRODUCTION 
This chapter provides a detailed discussion of addressing modes and descriptions of individual instruc­
tions. The discussion of addressing modes is divided into six major topics. 

1. Single operand addressing - One part of the instruction word specifies the registers; the re­
maining part provides information for locating the operand. 

2. Double operand addressing - Part of the instruction word specifies the registers; the remain­
ing parts provide information for locating two operands. 

3. Direct addressing - The operand is the content of the selected register. 

4. Deferred (indirect) addressing - The content of the selected register is the address of the 
operand. 

5. Use of the program counter (PC) as a general-purpose register - The PC is unique from other 
general-purpose registers. Whenever the processor retrieves an instruction, it automatically 
advances the PC by two. By combining this automatic advancement of the PC with four of 
the basic addressing modes, four special PC modes are produced - immediate, absolute, rela­
tive, and relative deferred. 

6. Use of the stack pointer (SP) as a general-purpose register - The SP can be used for stack 
operations. 

NOTE 
Instruction mnemonics and address mode symbols 
are sufficient for writing assembly language pro­
grams. The programmer need not be concerned 
about conversion to binary digits; this is accom­
plished automatically by the assembler program. 

7.2 ADDRESSING MODES 
Data stored in memory must be accessed and manipulated. Data handling is specified by an SBC-II/2I 
instruction (MOV, ADD, etc.) that usually specifies the following. 

1. The function to be performed (operation code). 

2. A general-purpose register to be used when locating the source and/or destination operand. 

3. An addressing mode that specifies how the selected register(s) is/are to be used. 

Most data handled by a computer is structured (in character strings, arrays, lists, etc.). SBC-ll/2I 
addressing modes allow efficient and flexible handling of structured data. 

7-1 



The general-purpose registers may be used with an instruction in any of the following four ways. 

1. As accumulators. The data to be manipulated resides within the register. 

2. As pointers. The content of the register is the address of the operand, rather than the operand 
itself. 

3. As pointers that automatically step through memory locations. Automatically stepping for­
ward through consecutive locations is known as autoincrement addressing; automatically 
stepping backward is known as autodecrement addressing. These modes are particularly use­
ful for processing tabular or array data. 

4. As index registers. The contents of the register and the word following the instruction are 
summed to produce the address of the operand. This allows easy access to variable entries in 
a list. 

The register arrangement is an important microprocessor feature that should be considered in con­
junction with the addressing modes. There are six general-purpose registers (RO-RS), a hardware stack 
pointer (SP) register (R6), and a program counter (PC) register (R 7). 

Registers RO-RS are not dedicated to any specific function; their use is determined by the instruction 
that is decoded. 

1. They can be used for operand storage. For example, the contents of two registers can be 
added and stored in another register. 

2. They can contain the address of an operand or serve as pointers to the address of an operand. 

3. They can be used for the autoincrement or autodecrement features. 

4. They can be used as index registers for convenient data and program access. 

The SBC-llj21 also has instruction addressing mode combinations that facilitate temporary data stor­
age structures. These combinations can be used for conveniently handling data that must be accessed 
frequently. This is known as stack manipulation. The register that keeps track of stack manipulation is 
the stack pointer (SP). Any register can be used as a stack pointer under program control; however, 
certain instructions associated with subroutine linkage and interrupt service automatically use register 
R6 as a hardware stack pointer, and therefore, R6 is frequently referred to as the SP. 

• The stack pointer keeps track of the latest entry on the stack. 

• The stack pointer moves down as items are added to the stack and moves up as items are 
removed. It always points to the top of the stack. 

• The hardware stack is used during trap or interrupt handling to store information and allow 
the processor to return to the main program. 

Register R 7 is used by the processor as its program counter (PC) and should not be used as a stack 
pointer or accumulator. Whenever an instruction is fetched from memory, the program counter is auto­
matically incremented by two to point to the next instruction word. 

7-2 



7.2.1 Single Operand Addressing 
The instruction format for all single operand instructions (such as clear, increment, and test) is illus­
trated in Figure 7-1. 

15 06 05 04 03 02 00 

Rn 

f f 
OP CODE DESTINATION ADDRESS 

MR-5458 

Figure 7-1 Single Operand Addressing 

Bits 15-6 specify the operation code that defines the type of instruction to be executed. Bits 5-0 form a 
six-bit field called the destination address field that consists of two subfields. 

1. Bits 0-2 specify which of the eight general-purpose registers is to be referenced by the in­
struction word. 

2. Bits 3-5 specify how the selected register will be used (address mode). Bit 3 is set to indicate 
deferred (indirect) addressing. 

7.2.2 Double Operand Addressing 
Operations that imply two operands (such as add, subtract, move, and compare) are handled by instruc­
tions that specify two addresses. The first operand is called the source operand; the second operand is 
called the destination operand. Bit assignments in the source and destination address fields may specify 
different modes and different registers. The instruction format for the double operand instruction is 
illustrated in Figure 7-2. 

15 12 11 10 09 08 06 05 04 03 02 00 

OP ~ODE Rn 

f f 
SOURCE ADDRESS DESTINATION ADDRESS 

-MR-6459 

Figure 7-2 Double Operand Addressing 

The source address field is used to select the_source operand, the first operand. The destination is used 
similarly and locates the second operand and the result. For example, the instruction ADD A, B adds 
the contents (source operand) of location A to the contents (destination operand) of location B. After 
execution, B will contain the result of the addition; the contents of A will be unchanged. 

7-3 



Examples in this chapter use the sample SBC-ll/21 instructions listed in Table 7-1. See Paragraph 7.3 
for a complete list of the SBC-ll/21 instructions. 

Mnemonic 

CLR 

CLRB 

INC 

INCB 

COM 

COMB 

ADD 

Table 7-1 Sample SHe-11/21 Instructions 

Description 

Clear (zero the specified destination) 

Clear byte (zero the byte in the specified 
destination) 

Increment (add one to the contents of the 
destination) 

Increment byte (add one to the contents of 
the destination byte) 

Complement (replace the contents of the 
destination by its logical complement; each 
zero bit is set and each one bit is cleared) 

Complement byte (replace the contents of the 
destination byte by its logical complement; each 
zero bit is set and each one bit is cleared) 

Add (add source operand to destination operand 
and store the result at destination address) 

DD = destination field (6 bits) 
SS = source field (6 bits) 
o = contents of 

7-4 

Octal Code 

0050DD 

l050DD 

0052DD 

l052DD 

0051DD 

l051DD 

06SSDD 



7.2.3 Direct Addressing 
Table 7-2 summarizes the four basic modes used with direct addressing. Figures 7-3, 7-4, 7-5, and 7-6, 
which follow the table, illustrate these four modes. 

Mode Name 

o Register 

2 Autoincrement 

4 Autodecrement 

6 Index 

INSTRUCTION 

Table 7-2 Direct Addressing Modes 

Assembler 
Syntax 

Rn 

(Rn)+ 

-(Rn) 

X(Rn) 

Function 

Register contains operand. 

Register is used as a pointer to sequential data, 
then incremented. 

Register is decremented and then used as a 
pointer. 

Value X is added to (Rn) to produce address of 
operand. Neither X nor (Rn) is modified. 

I INSTRUCTION H OPERAND 

MA-5460 

Figure 7-3 Mode 0 Register 

ADDRESS OPERAND 

~----~~ +2 FOR WORD, 
+1 FOR BYTE 

MR-5461 

Figure 7-4 Mode 2 Autoincrement 

7-5 



INSTRUCTION -2 FOR WORD, OPERAND 
-1 FOR BYTE 

MR-64S2 

Figure 7-5 Mode 4 Autodecrement 

INSTRUCTION ADDRESS 

OPERAND 

x 

MR-5463 

Figure 7-6 Mode 6 Index 

7.2.3.1 Register Mode (Mode 0) - With register mode, any of the general-purpose registers may be 
used as simple accumulators, and the operand is contained in the selected register. Because they are 
hardware registers, within the processor, the general-purpose registers operate at high speeds and pro­
vide speed advantages when used for operating on frequently accessed variables. The assembler inter­
prets and assembles instructions in the following form as register mode operations. 

OPRRn 

Rn represents a general-purpose register name or number"and OPR represents a general instruction 
mnemonic. Assembler syntax requires that a general-purpose register be defined as follows. 

RO = %0 (The '%' sign indicates register definition.) 
Rl = %1 
R2 = %2, etc. 

Registers are typically referred to by name as RO, RI, R2, R3, R4, R5, R6, and R7. However, R6 and 
R7 are also referred to as SP and PC, respectively. 

Register Mode Examples (Figures 7-7, 7-8, and 7-9) 
(all numbers in octal) 

Symbolic Octal Code 

INCR3 005203 

Instruction 
Name 

Increment 

7-6 

Operation 

One is added to the contents of the general­
purpose register R3. 



15 

0 : 0 : 0 : 

Symbolic 

ADD R2, R4 

06 05 

0 : 1 

: 
0 : 1 : 0 : 1 0 I 0 : 

f 
A 

OP CODE (INC(0052)) 

04 03 02 

o l 0 I 0 : 1 

f 
DESTINATION FIELD 

RO 

R1 

R2 

R3 

R4 

R5 

R6 (SP) 

R7 (PC) 

00 

1 ~ .., SELECT 
I REGISTER 

J 

I+-

I 
I 

I 
I 

J 

MR-5467 

Figure 7-7 INC R3 

Octal Code 

060204 

Instruction 
Name 

Add 

BEFORE 

R21 000002 

R41 000004 

Figure 7-8 

Operation 

The contents of R2 are added to the contents of 
R4. 

AFTER 

R21 000002 

R41 000006 

MR-5468 

ADD R2,R4 

7-7 



Symbolic Octal Code 

COMB R4 105104 

Instruction 
Name Operation 

Complement byte Complement bits 0-7 (byte) of one in R4. (When 
general-purpose registers are used, byte instruc­
tions only operate on bits 0-7; i.e., byte 0 of the 
register.) 

BEFORE 

R4 I 022222 

AFTER 

R41 022155 

MR·5469 

Figure 7-9 COMB R4 

7.2.3.2 Autoincrement Mode (Mode 2) - Autoincrement mode allows automatic stepping of a pointer 
through sequential elements of a table of operands. It assumes that the content of the selected general­
purpose register is the address of the operand. Contents of registers are stepped (by one for bytes, by 
two for words, and by two for R6 and R7) to address the next sequential location. The autoincrement 
mode is especially useful for array processing and stack processing; it accesses an element of a table 
and then steps the pointer to address the next operand in the table. Although most useful for table 
handling, this mode is general and may be used for a variety of purposes. The assembler interprets and 
assembles instructions in the following form as autoincrement mode operations. 

OPR (Rn)+ 

Autoincrement Mode Examples (Figures 7-10, 7-11, and 7-12) 

Symbolic 

CLR (R5)+ 

Octal Code 

005025 

Instruction 
Name 

Clear 

BEFORE 

ADDRESS SPACE 

20000 I 005025 R5 

Operation 

The contents of R5 are used as the address of the 
operand. The selected operand is cleared, and the 
contents of R5 are then incremented by two. 

AFTER 

ADDRESS SPACE 

20000 I 005025 

30000 000000 

REGISTER 

R51 030002 

MR-5464 

Figure 7-10 CLR (R5)+ 

7-8 



Symbolic 

CLRB (R5)+ 

Symbolic 

Octal Code 

105025 

Instruction 
Name 

Clear byte 

BEFORE 

ADDRESS SPACE 

20000 I 105025 

• 
30000 111 116 

30002 

Octal Code 

REGISTER 

R5l 030000 

I 

Figure 7-11 

Instruction 
Name 

J 

ADD (R2) + ,R4 062204 Add 

BEFORE 

ADDRESS SPACE 

10000 I 062204 I R2 '--_.--~ 

R4 I 010000 

1000021 010000 

Operation 

The contents of R5 are used as the address of the 
operand. The selected byte operand is cleared, and 
the contents of RS are then incremented by one. 

AFTER 

ADDRESS SPACE REGISTER 

20000 I 105025 R5 030001 

~ffi 
30002 I 

MR-5465 

CLRB (RS)+ 

Operation 

The contents of R2 are used as the address of the 
operand that is added to the contents of R4. R2 is 
then incremented by two. 

AFTER 

ADDRESS SPACES REGISTERS 

10000 I 062204 I R2 100004 

R41 020000 

1000021 010000 

MR-5470 

Figure 7-12 ADD (R2)+,R4 

7-9 



7.2.3.3 Autodecrement Mode (Mode 4) - Autodecrement mode is useful for processing data in a list in 
reverse direction. The contents of the selected general-purpose register are decremented (by two for 
word instructions, by one for byte instructions) and then used as the address of the operand. The choice 
of postincrement, predecrement features for the SBC-ll/21 are not arbitrary; they are intended to fa­
cilitate hardware/software stack operations. The assembler interprets and assembles instructions in the 
following form as autodecremeQt mode operations. 

OPR -(Rn) 

Autodecrement Mode Examples (Figures 7-13, 7-14, and 7-15) 

Symbolic 

INC -(RO) 

Symbolic 

INCB -(RO) 

Octal Code 

005240 

Instruction 
Name 

Increment 

BEFORE 

ADDRESS SPACE 

1000 I 005240 I 

17774 I 000000 

REGISTERS 

RO I 017776 

Operation 

The contents of RO are decremented by two and 
used as the address of the operand. The operand is 
incremented by one. 

AFTER 

ADDRESS SPACE 

1000 I 005240 I RO '--_,.....----' 

17774 I 000001 

MR-5466 

Figure 7-13 INC -(RO) 

Octal Code 

105240 

Instruction 
Name 

Increment byte 

Operation 

The contents of RO are decremented by one and 
used as the address of the operand. The operand is 
incremented by one. 

7-10 



Symbolic 

BEFORE 

ADDRESS SPACE REGISTER 

1000 I ·105240 I RO I 017776 

17774E8 

17776 CD 

AFTER 

ADDRESS SPACE REGISTER 

1000 I 105240 RO I 017775 I 
I 

17774 001 I 000 

17776 

MA-5471 

Figure 7-14 INCB -(RO) 

Octal Code 
Instruction 
Name Operation 

ADD -(R3),RO 064300 Add The contents of R3 are decremented by two and 
then used as a pointer to an operand (source) 
which is added to the contents of RO (destination 
operand). 

BEFORE 

ADDRESS SPACE 

10020 I 064300 I 

77774~ 
77776 c==J 

REGISTER 

RO I 000020 

R31 077776 

AFTER 

ADDRESS SPACE 

10020 I 064300 I 

·6 77774 000050 

77776 

Figure 7-15 ADD -(R3),RO 

REGISTER 

RO I 000070 

R31 077774 

7.2.3.4 Index Mode (Mode 6) - With index mode, the contents of the selected general-purpose regis­
ter and an index word following the instruction word are summed to form the address of the operand. 
The contents of the selected register may be used as a base for calculating a series of addresses, thus 
allowing random access to elements of data structures. The selected register can then be modified by 
the program to access data in the table. Index addressing instructions are in the following form: 

OPR X(Rn) 

where X is the indexed word and is located in the memory location following the instruction word, and 
Rn is the selected general-purpose register. 

7-11 



Index Mode Examples (Figures 7-16, 7-17, and 7-18) 

Symbolic 

CLR 200(R4) 

Octal Code 

005064 
000200 

Instruction 
Name 

Clear 

Operation 

The address of the operand is determined by add­
ing 200 to the contents of R4. The operand loca­
tion is cleared. 

BEFORE AFTER 
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER 

1020 005064 

1022 000200 

1024 

+ 
1200 

~ 1202 

Symbolic Octal Code 

COMB 200(Rl) 105161 
000200 

R4 001000 

1000 
+200 
1200 

Figure 7-16 

Instruction 
Name 

1020 005064 R4 I 001000 

1022 000200 

1024 

1200 

~ 
MA·5473 

CLR 200(R4) 

Operation 

Complement byte The contents of a location that is determined by 
adding 200 to the contents of Rl are one's comple­
mented (i.e., logically complemented). 

7-12 



1020 

1022 

20176 

20200 

Symbolic 

BEFORE 
ADDRESS SPACE REGISTER 

105161 Rl I 017777 

000200 

017777 
+200 

I O~, ! ~ I 
020177 

Figure 7-17 

Instruction 
Octal Code Name 

ADD 30(R2),20(R5) 066265 Add 
000030 
000020 

BEFORE 

ADDRESS SPACE REGISTER 

1020 066265 R2 I 001100 

1022 000030 

1024 000020 R5 002000 

1130 000001 

2020 000001 

1100 2000 
+30 +20 

1130 2020 

AFTER 
ADDRESS SPACE REGISTER 

1020 105161 Rl I 017777 

1022 000200 

20176 ffi 20200 

MR-7230 

COMB 200(Rl) 

Operation 

The contents of a location that is determined by 
adding 30 to the contents of R2 are added to the 
contents of a location that is determined by adding 
20 to the contents of R5. The result is stored at the 
destination address, i.e., 20(R5). 

AFTER 

ADDRESS SPACE REGISTER 

1020 066265 R2 I 001100 I 
1022 000030 

1024 000020 R5 002000 

1130 000001 

2020 000002 

MA-5475 

Figure 7-18 ADD 30(R2),20(R5) 

7-13 



7.2.4 Deferred (Indirect) Addressing 
The four basic modes may also be used with deferred addressing. In the register mode, the operand is 
the content of the selected register; in the register deferred mode, the content of the selected register is 
the address of the operand. In the three other deferred modes, the contents of the register select the 
address of the operand rather than the operand itself. Therefore, these modes are used when a table 
consists of addresses rather than operands. Assembler syntax for indicating deferred addressing is '@' 
(or '0' when this is not ambiguous). Table 7-3 summarizes the deferred versions of the basic modes. 
Figures 7-19, 7-20, 7-21, and 7-22, which follow the table, illustrate these deferred versions of the basic 
modes. 

Mode 

1 

3 

5 

7 

Table 7-3 Indirect Addressing Modes 

Name 

Register deferred 

Autoincrement deferred 

Autodecrement deferred 

Index deferred 

Assembler 
Syntax Function 

@Rn or (Rn) Register contains the address of the operand. 

@(Rn)+ Register is first used as a pointer to a word con­
taining the address of the operand and then incre­
mented (always by two, even for byte 
instructions ). 

@-(Rn) Register is decremented (always by two, even for 
byte instructions) and then used as a pointer to a 
word containing the address of the operand. 

@X(Rn) Value X (stored in a word following the instruc­
tion) and (Rn) are added, and the sum is used as a 
pointer to a word containing the address of the 
operand. Neither X nor (Rn) is modified. 

I INSTRUCTION H ADDRESS H OPERAND 

MR-5476 

Figure 7-19 Mode 1 Register Deferred 

INSTRUCTION ADDRESS ADDRESS OPERAND 

+2 

MR-5477 

Figure 7-20 Mode 3 Autoincrement Deferred 

7-14 



INSTRUCTION -2 ADDRESS OPERAND 

Figure 7-21 Mode 5 Autodecrement Deferred 

INSTRUCTION ADDRESS 

ADDRESS OPERAND 

x 

Figure 7-22 Mode 7 Index Deferred 

Register Deferred Mode Example - Mode 1 (Figure 7-23) 

Symbolic 

CLR@R5 

1677 

1700 

Octal Code 

005015 

Instruction 
Name 

Clear 

BEFORE 

ADDRESS SPACE REGISTER 

001700 

~ 
R5 

Operation 

The contents of the location specified in R5 are 
cleared. 

1677 

1700 

AFTER 

ADDRESS SPACE 

~ 
R5 

REGISTER 

001700 

MA-6480 

Figure 7-23 CLR @R5 

Autoincrement Deferred Mode Example - Mode 3 (Figure 7-24) 

Symbolic Octal Code 

INC @(R2)+ 005232 

Instruction 
Name 

Increment 

Operation 

The contents of R2 are used as the address of the 
address of the operand. The operand is increased 
by one; and the contents of R2 are incremented by 
two. 

7-15 



BEFORE 
ADDRESS SPACE REGISTER 

AFTER 
ADDRESS SPACE REGISTER 

R2 I 010302 

1010 §g R2 

1012 

1010 §g 
1012 

10300 Ej 
MR-7231 

Figure 7-24 INC @(R2)+ 

Autodecrement Deferred Mode Example - Mode 5 (Figure 7-25) 

Symbolic Octal Code 

COM @-(RO) 005150 

10100 

10102 

10774 

10776 

Instruction 
Name 

Complement 

Operation 

The contents of RO are decremented by two and 
then used as the address of the address of the ope­
rand. Operand is one's complemented (i.e., logi­
cally complemented). 

10100 

10102 

10774 

10776 

AFTER 
ADDRESS SPACE 

B RO 

MR-7232 

Figure 7-25 COM @ -(RO) 

7-16 



Index Deferred Mode Example - Mode 7 (Figure 7-26) 

Symbolic 

ADD @1000(R2),Rl 

1020 

1022 

1024 

1050 

1100 

1 

Instruction 
Octal Code Name 

067201 Add 
001000 

BEFORE 

ADDRESS SPACE REGISTER 

067201 Rl 001234 

001000 
R2 000100 

~ 
1000 
+100 
1100 

I 
I 

Operation 

1000 and the contents of R2 are summed to pro­
duce the address of the address of the source ope­
rand. The contents of the source operand are 
added to the contents of R 1; the result is stored in 
Rl. 

AFTER 

ADDRESS SPACE REGISTER 

1020 067201 Rl I 001236 

1022 001000 I R2 000100 

1024 

1050 

~ 
1100 B 

MR-5483 

Figure 7-26 ADD @1000(R2),Rl 

7.2.5 Use of the PC as a General-Purpose Register 
Although R7 is a general-purpose register, it doubles as the program counter for the microprocessor. 
Whenever the processor uses the program counter to acquire a word from memory, the program 
counter is automatically incremented by two to contain the address of the next word of the instruction 
being executed or the address of the next instruction to be executed. (When the program uses the PC to 
locate byte data, the PC is still incremented by two.) 

The PC responds to all standard SBC-ll/21 addressing modes. However, the PC provides advantages 
for handling position independent code and unstructured data with four of these modes. When utilizing 
the PC, these modes are termed immediate, absolute (or immediate deferred), relative, and relative 
deferred. Table 7-4 provides a summary of these modes. 

7-17 



Mode Name 

2 Immediate 

3 Absolute 

6 Relative 

7 Relative deferred 

Table 7-4 Register Addressing Modes 

Assembler 
Syntax 

#n 

@#A 

A 

@A 

Function 

Operand follows the instruction. 

Absolute address of operand follows the 
instruction. 

Relative address (index value) follows the 
instruction. 

Index value (stored in the word following the in­
struction) is the relative address for the address 
of the operand. 

When a standard program is available to different users, the ability to load it into different areas of 
memory and run it there is useful. The SBC-ll/21 can relocate a program efficiently using position 
independent code (PIC) that is written using the PC addressing modes. If an instruction and its oper­
ands are moved so that the relative distance between them is not altered, the same offset relative to the 
PC can be used in all positions in memory. Thus, PIC usually references locations relative to the cur­
rent location. 

The PC also facilitates the handling of unstructured data. This is particularly true of the immediate and 
relative modes. 

7.2.S.1 Immediate Mode - Using the immediate mode is equivalent to using the auto increment mode 
with the PC. It provides time improvements for accessing constant operands by including the constant 
in the memory location immediately following the instruction word. The assembler interprets and as­
sembles instructions in the following form as immediate mode operations. 

OPR #n,DD 

7-18 



Immediate Mode Example (Figure 7-27) 

Symbolic 

ADD #10,RO 

1020 

1022 

1024 

Octal Code 

062700 
000010 

Instruction 
Name 

Add 

BEFORE 
ADDRESS SPACE REGISTER 

062700 ~o I 000020 

000010 PC I 001020 

Operation 

The value lOis located in the second word of the 
instruction and is added to the contents of RO. Just 
before this instruction is fetched and executed, the 
PC points to the first word of the instruction. The 
processor fetches the first word and increments the 
PC by two. The source operand mode is 27 (au­
toincrement the PC). Thus, the PC is used as a 
pointer to fetch the operand (the second word of 
the instruction) before being incremented by two 
to point to the next instruction. 

1020 

1022 

1024 

AFTER 
ADDRESS SPACE REGISTER 

RO I 000030 062700 

1--0_0_00_1_0--l/PC I 001024 

MR-7233 

Figure 7-27 ADD #10,RO 

7.2.5.2 Absolute Addressing - Using the absolute addressing mode is the equivalent of using the im­
mediate deferred or autoincrement deferred modes with the PC. The contents of the location following 
the instruction are taken as the address of the operand. Immediate data is interpreted as an absolute 
address (i.e., an address that remains constant no matter where in memory the assembled instruction is 
executed). The assembler interprets and assembles instructions in the following form as absolute ad­
dressing mode operations. 

OPR@#A 

Absolute Mode Examples (Figures 7-28 and 7-29) 

Symbolic 

CLR @#1100 

Octal Code 

005037 
001100 

Instruction 
Name 

Clear 

Operation 

The contents of location 1100 are cleared. 

7-19 



Symbolic 

ADD @#2000,R3 

20 

22 

24 

20 

22 

1100 

1102 

BEFORE 

ADDRESS SPACE 

005037 

001100 PC 

t=3 
Figure 7-28 

Instruction 
Octal Code Name 

063703 Add 
002000 

BEFORE 
ADDRESS SPACE REGISTER 

063703 

"-002000 

R3 I 000500 

PC I 000020 

I 

AFTER 

ADDRESS SPACE 

20 005037 

22 001100 

V 
PC 

24 

1100 t=j 1102 

MA-5485 

CLR@#1100 

Operation 

The contents of location 2000 are added to R3. 

AFTER 
ADDRESS SPACE REGISTER 

20 063703 R3 I 001000 

22 002000 

/ 
PC I 000024 

24 

• 2000 t=j 
Figure 7-29 ADD @#2000,R3 

7.2.5.3 Relative Addressing - The relative addressing mode is assembled as index mode using R7. The 
base of the address calculation, which is stored in the second or third word of the instruction, is not the 
address of the operand, but the number that, when added to the PC, becomes the address of the oper­
and. This mode is useful for writing position independent code because the location referenced is always 
fixed relative to the PC. When instructions are to be relocated, the operand is moved by the same 
amount. The assembler interprets and assembles instructions in the following forms as relative address­
ing mode operations. 

OPR A or OPR X(PC) 

where X is the location of A relative to the instruction. 

7-20 



Relative Addressing Example (Figure 7-30) 

Symbolic 

INCA 

Octal Code 

005267 
000054 

Instruction 
Name 

Increment 

BEFORE 
ADDRESS SPACE 

1020 005267 

~ 1022 000054 PC 

1024 

1026 

1100 000000 1024 

t +54 
1100 

Figure 7-30 

Operation 

To increment location A, contents of memory lo­
cation immediately following instruction word are 
added to (PC) to produce address A. Contents of 
A are increased by one. 

1020 

1022 

1024 

1026 

1100 

INCA 

AFTER 
ADDRESS SPACE 

0005267 

000054 -
000001 

PC 

MR·5487 

7.2.5.4 Relative Deferred Addressing - The relative deferred addressing mode is similar to the relative 
mode. However, the second word of the instruction, when added to the PC, contains the address of the 
address of the operand rather than the address of the operand. The assembler interprets and assembles· 
instructions in the following forms as relative deferred addressing mode operations. 

OPR @A or OPR @X(PC) 

where X is the location containing the address of A relative to the instruction. 

Relative Deferred Mode Example (Figure 7-31) 

Symbolic 

CLR@A 

Octal Code 

005077 
000020 

Instruction 
Name 

Clear 

7-21 

Operation 

The second word of instruction is added to up­
dated PC to produce address of address of ope­
rand. The operand is cleared. 



BEFORE AFTER 
ADDRESS SPACE ADDRESS SPACE 

1020 005077 

~ 
1020 005077 

1022 000020 PC 1022 000020 PC 

1024 1024 1024 / 
+20 

• 
1044 

'~ 1044 010100 

10100 I 100001 I 10100 000000 

MR-7235 

Figure 7-31 CLR@A 

7.2.6 Use of the Stack Pointer as a General-Purpose Register 
The processor stack pointer (SP, register R6) is the general-purpose register most often used for stack 
operations related to program nesting. Autodecrement with register R6 pushes data onto the stack, and 
autoincrement with register R6 pops data off the stack. Since the SP is used by the processor for inter­
rupt handling, it has a special attribute: autoincrements and autodecrements are always done in steps of 
two. Byte operations using the SP in this way leave odd addresses unmodified. 

7.3 INSTRUCTION SET 
Specifications for each instruction in the SBC-l1/21 instruction set follow and include each instruc­
tion's mnemonic, octal code, binary code, a diagram showing the format of the instruction, a symbolic 
notation describing its execution and effect on the condition codes, a description, special comments, and 
examples. 

MNEMONIC: A mnemonic is indicated before each description. When the word instruction has a byte 
equivalent, the byte mnemonic is also shown. 

INSTRUCTION FORMAT: A diagram accompanying each instruction shows the octal op code, bina­
ry op code, and bit assignments. In byte instructions, the most significant bit (bit 15) is always a one. 

SYMBOLS: The following symbols are used in the instruction specifications. 

0 = contents of 

SS or src = source address 

DD or dst = destination address 

loc = location 

<-- = becomes 

T = "is popped from stack" 

1 = "is pushed onto stack" 

7-22 



SYMBOLS (Cont) : 

1\ = boolean AND 

v = boolean OR 

\;f = exclusive OR 

= boolean not 

Reg or R = register 

B = Byte 

o for word 

• 1 for byte 

= concatenated 

7.3.1 Instruction Formats 
The following formats include all instructions used in the SBC-ll /21. Refer to individual instructions 
for more detailed information. 

1. Single operand group: 

15 

2. Double operand group: 

15 12 11 

CLR, CLRB, COM, COMB, INC, INCB, DEC, DECB, NEG, 
NEGB, ADC, ADCB, SBC, SBCB, TST, TSTB, ROR, RORB, 
ROL, ROLB, ASR, ASRB, ASL, ASLB, JMP, SWAB, MFPS, 
MTPS, SXT, XOR 

06 05 00 

MR-5191 

BIT, BITB, BIC, BICB, BIS, BISB, ADD, SUB, MOV, MOVB, 
CMP, CMPB 

06 05 00 

s~ ~D : 

MR-5192 

7-23 



3. Program control group: 

a. Branch (all branch instructions) 

15 08 07 00 

OP C~DE OF~SET 
MA·5193 

b. Jump to subroutine (JSR) 

15 09 08 06 05 00 

0 : 0 : : 4 : R : : D~ : 
MA-5194 

c. Subroutine return (RTS) 

15 03 02 00 

I 0 : 0 0 : : 2 0 : R: 

MR-5195 

d. Traps (breakpoint, lOT, EMT, TRAP, BPT) 

15 00 

OP C~DE 
MR-5196 

e. Subtract 1 and branch if = 0 (SOB) 

15 09 08 06 05 00 

0 

: 
0 : : 7 : R N~ 

MR-5197 

7-24 



4. Operate group: HALT, WAIT, RTI, RESET, RTT, NOP, MFPT 

15 00 

MR-5198 

5. Condition code operators: (all condition code instructions) 

15 06 05 04 03 02 01 00 

MR-5199 

Byte Instructions - The SBC-11/21 includes a full complement of instructions that manipulate byte 
operands. Because all microprocessor addressing is byte-oriented, byte manipulation addressing is 
straightforward. Byte instructions with autoincrement or autodecrement direct addressing cause the 
specified register to be modified by one to point to the next byte of data. Byte operations in register 
mode access the low-order byte of the specified register. These provisions enable the SBC-1l/21 to 
perform as either a word or byte microprocessor. The numbering scheme for word and byte addresses in 
memory is illustrated in Figure 7-32. 

HIGH BYTE 
ADDRESS 

002001 

002003 

BYTE 1 

BYTE 3 

BYTE 0 

BYTE 2 

WORD OR BYTE 
ADDRESS 

002000 

002002 

MA-5201 

Figure 7-32 Byte Instructions 

7-25 



The most significant bit (bit IS) of the instruction word is set to indicate a byte instruction. 

Byte Instruction Example 

Symbolic 

CLR 
CLRB 

7.3.2 List of Instructions 

Octal Code 

OOSODD 
10S0DD 

Instruction Name 

Clear word 
Clear byte 

The SBC-ll/21 instruction set is shown in Table 7-S. 

Table 7-5 SBC-H/2l Instruction Set 

Mnemonic Instruction 

SINGLE OPERAND 

General 
CLR(B) Clear destination 
COM(B) Complement destination 
INC(B) Increment destination 
DEC(B) Decrement destination. 
NEG(B) Negate destination 
TST(B) Test destination 

Shift & Rotate 
ASR(B) Arithmetic shift right 
ASL(B) Arithmetic shift left 
ROR(B) Rotate right 
ROL(B) Rotate left 
SWAB Swap bytes 

Multiple Precision 
ADC(B) Add carry 
SBC(B) Subtract carry 
SXT Sign extend 

PS Word Operators 
MFPS Move byte from PS 
MTPS Move byte to PS 

DOUBLE OPERAND 

General 
MOV(B) Move source to destination 
CMP(B) Compare source to destination 
ADD Add source to destination 
SUB Subtract source from destination 

7-26 

OpCode 

.OSODD 

.OSlDD 

.OS2DD 

.OS3DD 

.OS4DD 

.OS7DD 

.062DD 

.063DD 

.060DD 

.061DD 
0OO3DD 

.OSSDD 

.OS6DD 
0067DD 

1067DD 
1064SS 

.1SSDD 

.2SSDD 
06SSDD 
16SSDD 



Mnemonic 

Logical 
BIT{B) 
BIC(B) 
BIS(B) 
XOR 

PROGRAM CONTROL 

Branch 
BR 
BNE 
BEQ 
BPL 
BMI 
BVC 
BVS 
BCC 
BCS 

Signed Conditional Branch 

Table 7-5 SBC-H/21 Instruction Set (Cont) 

Instruction 

Bit test 
Bit clear 
Bit set 
Exclusive OR 

Branch (unconditional) 
Branch if not equal (to zero) 
Branch if equal (to zero) 
Branch if plus 
Branch if minus 
Branch if overflow is clear 
Branch if overflow is set 
Branch if carry is clear 
Branch if carry is set 

BGE Branch if greater than or equal (to zero) 
BL T Branch if less than (zero) 
BGT Branch if greater than (zero) 
BLE Branch if less than or equal (to zero) 

Unsigned Conditional Branch 
BHI Branch if higher 
BLOS Branch if lower or same 
BHIS Branch if higher or same 
BLO Branch if lower 

Jump & Subroutine 
JMP 
JSR 
RTS 
SOB 

Trap & Interrupt 
EMT 
TRAP 
BPT 
lOT 
RTI 
RTT 

Jump 
Jump to subroutine 
Return from subroutine 
Subtract one and branch (if =1= 0) 

Emulator trap 
Trap 
Breakpoint trap 
Input/output trap 
Return from interrupt 
Return from interrupt 

7-27 

OpCode 

.3SSDD 

.4SSDD 

.5SSDD 
074RDD 

000400 
001000 
001400 
100000 
100400 
102000 
102400 
103000 
103400 

002000 
002400 
003000 
003400 

101000 
101400 
103000 
103400 

0001DD 
004RDD 
00020R 
077ROO 

104000-104377 
104400-104777 

000003 
000004 
000002 
000006 



Mnemonic 

MISCELLANEOUS 

HALT 
WAIT 
RESET 
MFPT 

Table 7-5 SHC-H/21 Instruction Set (Cont) 

Instruction 

Halt 
Wait for interrupt 
Reset external bus 
Move processor type 

RESERVED INSTRUCTIONS 

CONDITION CODE OPERATORS 

CLC 
CLV 
CLZ 
CLN 
CCC 
SEC 
SEV 
SEZ 
SEN 
SCC 
NOP 

Clear C 
Clear V 
Clear Z 
ClearN 
Clear all CC bits 
Set C 
Set V 
Set Z 
SetN 
Set all CC bits 
No operation 

7.3.3 Single Operand Instructions . 

NOTE 
In most SHC-H/21 instructions, a write operation 
to a memory location or register is always preceded 
by a read operation from the same location except 
when writing PC and processor status (PS) to the 
stack in the following two cases. 

1. The execution of the microcode preceding an 
interrupt or trap service routine. 

2. Interrupt and trap instructions: 

HLT 
TRAP 
HPT 
lOT 

7-28 

OpCode 

000000 
000001 
000005 
000007 

00021R 
00022R 

000241 
000242 
000244 
000250 
000257 
000261 
000262 
000264 
000270 
000277 
000240 



7.3.3.1 General-

Clear Destination 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

(dst) r- 0 

N: cleared 
Z: set 
V: cleared 
C: cleared 

06 05 

Word: Contents of specified destination are replaced with zeros. 
Byte: Same 

CLRRI 

Before After 

MA·5202 

(Rl) = 177777 (Rl) = 000000 

NZVC NZVC 
1 1 1 1 o 100 

Complement Destination 

15 06 05 00 

0/< a : a : a : 1 : a : 1 : 0 : a : 1 I d : d : d : d : d d 

CLR 
CLRB 

COM 
COMB 

1105100 

MR-5203 

Operation: 

Condition Codes: 

(dst) r- - (dst) 

N: set if most significant bit of result is set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: set 

7-29 



Description: Word: The contents of the destination address are replaced by their logical com­
plement (each bit equal to zero is set, and each bit equal to one is cleared). 

Example: 

INC 
INCH 

Byte: Same 

Increment Destination 

Before 
(RO) = 013333 

NZVC 
o 1 1 0 

COMRO 

After 
(RO) = 164444 

NZVC 
100 1 

15 06 05 00 

0/< 0 : 0 : 0 : 1 : 0 : 1 : 0 : 1 : 0 I d : d : d : d : d : d 

Operation: (dst) +- (dst) + 1 

Condition Codes: N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if (dst) held 077777; cleared otherwise 
C: not affected 

Description: Word: One is added to contents of destination. 
Byte: Same 

Example: INC R2 

Before 
(R2) = 000333 

NZVC 
o 0 0 0 

7-30 

MR-5204 

After 
(R2) = 000334 

NZVC 
o 0 0 0 



Decrement Destination 

Operation: 

Condition Codes: 

Description: 

Example: 

(dst) +- (dst) -1 

N: set if result < 0, cleared otherwise 
Z: set is result = 0; cleared otherwise 
V: set if (dst) was 100000; cleared otherwise 
C: not affected 

Word: One is subtracted from the contents of the destination. 
Byte: Same 

DECRS 

Before After 

MR-5205 

(RS) = 000001 (RS) = 000000 

NZVC 
1 000 

Negate Destination 

15 06 05 

0/< 0 : 0': 0 : 1 : 0 : 1 : 1 : 0 

Operation: (dst) +- - (dst) 

Condition Codes: N: set if the result < 0; cleared otherwise 
Z:- set if the result = 0; cleared otherwise 
V: set if the result is 100000; cleared otherwise 
C: cleared if the result is 0; set otherwise 

NZVC 
o 1 0 0 

00 

MR.5206 

DEC 
DECB 

NEG 
NEGB 

Description: Word: The contents of the destination address are replaced by its two's com-
plement. 100000 is replaced by itself (in two's complement notation, the 
most negative number has no positive counterpart). 

Byte: Same 

7-31 



Example: 

TST 
TSTB 

Test Destination 

15 

Before 
(RO) = 000010 

NZVC 
000 0 

0/1 : 0: 0: 0: 1 : 0: 

Operation: (dst) +- (dst) 

NEGRO 

06 05 

Condition Codes: N: set if the result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: cleared 

After 
(RO) = 177770 

NZVC 
100 1 

00 

MR-5207 

Description: Word: The condition codes Nand Z are set according to the contents of the desti-
nation address, and the contents of the destination remain unmodified. 

Byte: Same 

Example: TST Rl 

Before 
CRt) = 012340 

NZVC 
o 0 1 1 

After 
(Rt) = 012340 

NZVC 
000 0 

7.3.3.2 Sbifts and Rotates - Scaling data by factors of two is accomplished with two shift instructions: 

1. ASR - Arithmetic shift right 
2. ASL - Arithmetic shift left 

The sign bit (bit 15) of the operand is reproduced in shifts to the right. The low-order bit is filled with 
zero in shifts to the left. Bits shifted out of the C-bit, as shown in the following examples, are lost. 

The rotate instructions operate on the destination word and the C-bit as though they formed a 17-bit 
circular buffer. These instructions facilitate sequential bit testing and detailed bit manipulation. 

7-32 



ASR 
ASRB 

Arithmetic Shift Right 

15 06 05 00 

0/< 0 : 0 : 0 : 1 : 1 : 0 : 0 : 1 

Operation: 

Condition Codes: 

Description: 

Example: 

WORD: 

BYTE: 

MR·5208 

(dst) -- (dst) shifted one place to the right 

N: set if the high-order bit of the result is set (result < 0); cleared otherwise 
Z: set if the result = 0; cleared otherwise 
V: loaded from the exclusive OR of the N-bit and C-bit (as set by the completion 

of the shift operation) 
C: loaded from the low-order bit of the destination 

Word: All bits of the destination are shifted right one place. Bit 15 is reproduced. 
The C-bit is loaded from bit 0 of the destination. ASR performs signed di­
vision of the destination by two. 

Byte: Same 

00 
1--c=J-

~~5~: __ ~ __ ~OrD_D_A~D_DR_E_SSr-~ __ ~:~0~' ~~~7~:r-~ ___ :~EV~E~N~:~DD~R~ET:S~~ __ ~0~0~1~ 

MR 7236 

7-33 



ASL 
ASLB 

Arithmetic Shift Left 

15 00 

0/< 0 : 0 : 0 : 1 : 1 : 0 : 0 : 1 

Operation: 

Condition Codes: 

Description: 

Example: 

WORD: 

BYTE: 

MR-5210 

(dst) +- (dst) shifted one place to the left 

N: set if the high-order bit of the result is set (result < 0); cleared otherwise 
Z: set if the result = 0; cleared otherwise 
V: loaded with the exclusive OR of the N-bit and C-bit (as set by the completion 

of the shift operation) 
C: loaded with the high-order bit of the destination 

Word: All bits of the destination are shifted left one place. Bit 0 is loaded with a 
zero. The C-bit of the status word is loaded from the most significant bit of 
the destination. ASL performs signed multiplication of the destination by 
two with overflow indication. 

Byte: Same 

00 

MR·5211 

7-34 



Rotate Right 

Operation: 

Condition Codes: 

Description: 

Example: 

WORD: 

BYTE: 

MR·5212 

(dst) ;- (dst) rotate right one place 

ROR 
RORB 

N: set if the high-order bit of the result is set (result < 0); cleared otherwise 
Z: set if all bits of result = 0; cleared otherwise 
V: loaded with the exclusive OR of the N-bit and C-bit (as set by the completion 

of the rotate operation) 
C: loaded with the low-order bit of the destination 

Word: All bits of the destination are rotated right one place. Bit 0 is loaded into 
the C-bit, and the previous contents of the C-bit are loaded into bit 15 of 
the destination. 

Byte: Same 

+ ~--------~~~--------~ 1 ~ 
15 08 07 00 

I I EV:EN 

MR-5213 

7-35 



ROL 
ROLB 

Rotate Left 

15 

0/1: 0 

Operation: 

Condition Codes: 

Description: 

Example: 

WORD: 

I 15 

06 05 00 

MR·5214 

(dst) ;- (dst) rotate left one place 

N: set if the high-order bit of the result word is set (result < 0); cleared otherwise 
Z: set if all bits of the result word = 0; cleared otherwise 
V: loaded with the exclusive. OR of the N-bit and C-bit (as set by the completion 

of the rotate operation) 
C: loaded with the high-order bit of the destination 

Word: All bits of the destination are rotated left one place. Bit 15 is loaded into 
the C-bit of the status word, and the previous contents of the C-bit are 
loaded into bit 0 of the destination. 

Byte: Same 

~ 
DST 00 

~~I __ ~~~~~~~ 
BYTE: 

~---"8t------, 
1 

~~ 1 
15 08 07 00 

) I E~EN 
MR-5215 

SWAB 

Swap Bytes 000300 

06 05 00 

MR-5216 

7-36 



Operation: 

Condition Codes: 

Description: 

Example: 

Byte IIByte 0 ;- Byte OIByte 1 

N: set if the high-order bit of the low-order byte (bit 7) of the result is set; cleared 
otherwise 

Z: set if low-order byte of result = 0; cleared otherwise 
V: cleared 
C: cleared 

High-order byte and low-order byte of the destination word are exchanged (desti­
nation must be a word address). 

Before 
(R1) = 077777 

NZVC 
I I 1 1 

SWAB R1 

After 
(Rl) = 177577 

NZVC 
o 0 0 0 

7.3.3.3 Multiple Precision -It is sometimes necessary to do arithmetic on operands considered as mul­
tiple words or bytes. The SBC-ll 121 makes special provisions for such operations with the instructions 
ADC (add carry) and SBC (subtract carry) and their byte equivalents. For example, two 16-bit words 
may be combined into a 32-bit double precision word and added or subtracted as shown in Figure 7-33. 

32-BITWORD 

( - 1 
31 16 15 0 

OPERANDI A1 I I AO I 
r------------------------------------------------------------------, ( 1 
31 16 r15~ _________________________ ...,O 

OPERANDI~ ________ B1 _______ ~1 LI _________ B_O ___________ ~I 

31 16 15 0 

RESULTI;;"';"'-----~II ;.::...--------;1 
MR·5217 

Figure 7-33 Multiple Precision 

7-37 



Multiple Precision Example 

The addition of - 1 and - 1 could be performed as follows: 

-1 = 37777777777 

(Rl) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777 

ADD RI,R2 
ADCR3 
ADD R4,R3 

1. After (Rl) and (R2) are added, 1 is loaded into the C-bit 
2. ADC instruction adds C-bit to (R3); (R3) = 0 
3. (R3) and (R4) are added 
4. Result is 37777777776 or - 2 

ADC 
ADCH 

Add Carry 

15 06 05 00 

0/< 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 1 I d : d : d : d : d : d I 

Operation: (dst) +- (dst) + (C-bit) 

Condition Codes: N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if (dst) was 077777 and (C) was 1; cleared otherwise 
C: set if (dst) was 177777 and (C) was 1; cleared otherwise 

MR-5218 

Description: Word: The contents of the C-bit are added into the destination. This permits the 
carry from the addition of the low-order words to be carried into the high­
order result. 

Byte: Same 

Example: Double precision addition is done with the following instruction sequence: 

SHe 
SHeH 

Subtract Carry 

ADD AO,BO 
ADC BI 
ADD AI,BI 

add low-order parts 
add carry into high order 
add high-order parts 

7-38 



15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

Operation: (dst) (- (dst) - (C) 

Condition Codes: N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: set if (dst) was 100000; cleared otherwise 
C: set if (dst) was 0 and C was 1; cleared otherwise 

Description: Word: The contents of the C-bit are subtracted from the destination. This permits 
the carry from the subtraction of two low-order words to be subtracted 
from the high-order part of the result. 

Byte: Same 

Example: Double precision subtraction is done with the following instruction sequence: 

. Sign Extend 

15 

o : o : 

Operation: 

Condition Codes: 

Description: 

Example: 

SUB AO,BO 
SBC Bl 
SUB AI,Bl 

o : o : 1 : 1 : o : 

(dst) (- 0 if N-bit is clear 
(dst) (- 1 if N-bit is set 

N : unaffected 
Z: set if N-bit is clear 
V: cleared 
C: unaffected 

06 

1 : 
1 

: 1 

SXT 

0067DD 

05 00 

I d : d d : d : d : d I 
MR·5220 

If the condition code bit N is set, a -1 is placed in the destination operand; if the 
N-bit is clear, then a zero is placed in the destination operand. This instruction is 
particularly useful in multiple precision arithmetic because it permits the sign to 
be extended through multiple words. 

SXTA 

Before After 
(A) = 012345 (A) = 177777 

NZVC NZVC 
1 000 1 000 

7-39 



7.3.3.4 PS Word Operators -

MFPS 

Move Byte from Processor Status (PS) 106700 

15 

11 : 0 

Operation: 

Condition Codes: 

Description: 

Example: 

MTPS 

08 07 

: 0 : 0 : 1 : 1 : 0 : 1 11 : 1 : d 

(dst) - PS 
dst lower 8 bits 

N: set if PS bit 7 = 1; cleared otherwise 
Z: set if PS <0:7> = 0; cleared otherwise 
V: cleared 
C: not affected 

00 

: d : d : d : d : d 

MR-5221 

The 8-bit contents of the PS are moved to the effective destination. If the destina­
tion is mode 0, PS bit 7 is sign extended through the upper byte of the register. 
The destination operand address is treated as a byte address. 

Before 
RO [0] 
PS [000014] 

MFPSRO 

After 
RO [000014] 
PS [000000] 

Move Byte to Processor Status 1064SS 

15 

11 : 0 

Operation: 

Condition Codes: 

Description: 

08 07 00 

: 0 : 0 : 1 : 1 : 0 : 1 I 0 : 0 : s : s : s : s : s : s 

MR-5222 

PS - (src) 

Set according to effective source operand bits 0-3 

The 8 bits of the effective operand replace the current contents of the PS. The 
source operand address is treated as a byte address. The T-bit (PS bit 4) cannot be 
set with this instruction. The source operand remains unchanged. This instruction 
can be used to change the priority bits (PS bits 7-5) in the PS. 

7-40 



7.3.4 Double Operand Instructions 
Double operand instructions save instructions and time because they eliminate the need for load and 
save sequences such as those used in accumulator-oriented machines. 

7.3.4.1 General-

MOV 
MOVB 

Move Source to Destination 

15 12 11 06 05 00 

MR-5223 

Operation: (dst) +- (src) 

Condition Codes: N: set if (src) < 0; cleared otherwise 
Z: set if (src) = 0; cleared otherwise 
V: cleared 
C: not affected 

Description: Word: The source operand is moved to the destination location. The previous con-

Example: 

tents of the destination are lost. The contents of the source address are not 
affected. 

Byte: Same as .MOV. The MOVB to a register (unique among byte instructions) 
extends the most significant bit of the low-order byte (sign extension). Oth­
erwise, MOVB operates on bytes exactly as MOV operates on words. 

MOVXXX,Rl loads register 1 with the contents of memory loca­
tion; XXX represents a programmer-defined mne­
monic used to represent a memory location 

MOV #20,RO loads the number 20 into register 0; '#' indicates 
that the value 20 is the operand 

MOV @#20,-(R6) pushes the operand contained in location 20 onto 
the stack 

MOV (R6)+,@#177566 pops the operand off a stack and moves it into 
memory location 177566 (terminal print buffer) 

MOV Rl,R3 performs an inter-register transfer 

MOVB @#177562,@#177566 moves a character from terminal keyboard buffer 
to terminal printer buffer 

7-41 



CMP 
CMPB 

Compare Source to Destination 

15 

0/1: 0 

Operation: 

Condition Codes: 

Description: 

ADD 

12 11 06 

(src) - (dst) 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 

05 00 

MA·5224 

V: set if there was arithmetic overflow; that is, operands were of opposite signs 
and the sign of the destination was the same as the sign of the result; cleared 
otherwise 

C: cleared if there was a carry from the most significant bit of the result; set oth­
erwise 

Word: The source and destination operands are compared, and the condition 
codes are set. The condition codes may then be used for arithmetic and 
logical conditional branches. Both operands are unaffected. The only ac­
tion is to set the condition codes. The compare is customarily followed by a 
conditional branch instruction. Unlike the subtract instruction, the order of 
operation is (src) - (dst), not (dst) - (src). 

Byte: Same 

Add Source to Destination 06SSDD 

Operation: 

Condition Codes: 

12 11 06 05 

(dst) -- (src) + (dst) 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 

00 

MR·5226 

V: set if there was arithmetic overflow as a result of the operation; that is, both 
operands were of the same sign and the result was of the opposite sign; cleared 
otherwise 

C: set if there was a carry from the most significant bit of the result; cleared oth­
erwise 

7-42 



Description: 

Example: 

Word: The source operand is added to the destination operand and the result is 
stored at the destination address. The original contents of the destination 
are lost. The contents of the source are not affected. Two's complement 
addition is performed. 

Byte: There is no equivalent byte mode. 

ADD 20,RO 
ADD R1,XXX 
ADD R1,R2 
ADD @#17750,XXX 

add to register 
add to memory 
add register to register 
add memory to memory 

XXX is a programmer-defined mnemonic for a memory location. 

Subtract Source from Destination 

SUB 

16SSDD 

Operation: 

Condition Codes: 

Description: 

Example: 

12 11 06 05 

(dst) +- (dst) - (src) 

N: set if result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 

00 

MR-5226 

V: set if there was arithmetic overflow as a result of the operation, that is if oper­
ands were of opposite signs and the sign of the source was the same as the sign 
of the result; cleared otherwise 

c: cleared if there was a carry from the most significant bit of the result; set oth­
erwise 

Word: The source operand is subtracted from the destination operand, and the re­
sult is left at the destination address. The original contents of the destina­
tion are lost. The contents of the source are not affected. In double-preci­
sion arithmetic, the C-bit, when set, indicates a borrow. 

Byte: There is no equivalent byte mode. 

Before 
(R1) = 011111 
(R2) = 012345 

NZVC 
1 I I I 

SUB Rl,R2 

7-43 

After 
(Rl) = 011111 
(R2) = 001234 

NZVC 
o 0 0 0 



7.3.4.2 Logical - Logical group instructions have the same format as the double operand arithmetic 
group. They permit operations on data at the bit level. 

BIT 
BITB 

Bit Test 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

BIC 
BICB 

Bit Clear 

15 

0/1: 1 

12 11 06 05 

(src) 1\ (dst) 

N: set if high-order bit of result is set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

00 

MR-5227 

Word: Logical "and" comparison of the source and destination operands is per­
formed, and condition codes are modified accordingly. Neither the source 
nor destination is affected. The BIT instruction may be used either to test 
whether any of the corresponding bits that are set in the destination are 
also set in the source or whether all corresponding bits set in the destina­
tion are clear in the source. 

Byte: Same 

BIT #30,R3 test bits three and four of R3 to see if both are off 

R3 = 0000000000011 000 

Before 
NZVC 
1 111 

12 11 

After 
NZVC 
000 1 

7-44 

.4SSDD 

06 05 00 

MR-5228 



Operation: (dst) t- (dst) 1\ ,..,., (src) 

Condition Codes: N: set if high-order bit of result is set; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

Description: Word: Each bit in the destination that corresponds to a set bit in the source is 
cleared. The original contents of the destination are lost. The contents of 
the source are not affected. 

Byte: Same 

Example: BIC R3,R4 

Bit Set 

15 12 11 

Before 
(R3) = 001234 
(R4) = 001111 

NZVC 
1 I 1 1 

Before: 

After: 

Operation: (dst) t- (dst) V (src) 

After 
(R3) = 001234 
(R4) = 000101 

NZVC 
000 1 

(R3) = 0000001 010011 100 
(R4) = 0000001 001 001 001 

(R4) = 0000000001 000001 

Condition Codes: N: set if high-order bit of result is set, cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: not affected 

00 

HIS 
HISH 

Description: Word: Inclusive OR operation is performed between the source and destination 
operands, and the result is left at the destination address (i.e., correspond­
ing bits set in the source are set in the destination). The contents of the 
destination are lost. 

Byte: Same 

7-45 



Example: 

XOR 

Exclusive OR 

15 

Before 
(RO) = 001234 
(Rl) = 001111 

NZVC 
o 0 0 0 

Before: 

After: 

09 08 

Operation: (dst) +- (dst) 'if (Reg) 

BIS RO,R1 

After 
(RO) = 001234 
(R1) = 001335 

NZVC 
o a a a 

(RO) = 0000001010 011 100 
(R1) = 0000001 001 001 001 

(Rl) = 0000001 011 all 101 

06 05 

Condition Codes: N: set if the result < 0; cleared otherwise 
Z: set if result = 0; cleared otherwise 
V: cleared 
C: unaffected 

074RDD 

00 

Description: The exclusive OR of the register and destination operand is stored in the destina­
tion address. Contents of register are unaffected. Assembler format is: XOR R,D. 

Example: XOR RO,R2 

Before 
(RO) = 001234 
(R2) = 001111 

NZVC 
1 1 1 1 

Before: 

After: 

7-46 

After 
(RO) = 001234 
(R2) = 000325 

NZVC 
a a a 1 

(RO) = 0000001010011 100 
(R2) = 0000001 001 001 001 

(R2) = 0000000 011 010101 



7.3.5 Program Control Instructions 

7.3.5.1 Branches - Program control instructions cause a branch to a location defined by the sum of the 
offset (multiplied by two) and the current contents of the program counter if: 

1. The branch instruction is unconditional. 

2. The branch instruction is conditional, and the conditions are met after testing the condition 
codes (NZVC). 

The offset is the number of words from the current contents of the PC forward or backward. The cur­
rent contents of the PC point to the word following the branch instruction. 

Although the offset expresses a byte address, the PC is expressed in words. Before it is added to the PC, 
the offset is automatically multiplied by two and sign extended to express words. Bit 7 is the sign of the 
offset. If it is set, the offset is negative and the branch is done in the backward direction. Similarly, if 
bit 7 is not set, the offset is positive and the branch is done in the forward direction. 

The 8-bit offset allows branching in the backward direction by 2008 words (400 bytes) from the current 
PC, and in the forward direction by 1778 words (376 bytes) from the current Pc. 

The microprocessor assembler handles address arithmetic for the user and computes and assembles the 
proper offset field for branch instructions in the following form. 

Bxx loc 

where Bxx is the branch instruction and loc is the address to which the branch is to be made. The 
assembler gives an error indication in the instruction if the permissible branch range is exceeded. 
Branch instructions have no effect on condition codes. Conditional branch instructions, where the 
branch condition is not met, are treated as NO OPs. 

BR 

Branch (Unconditional) 000400 Plus Offset 

15 08 07 00 

o : 0 : 0 : 0 : 0 : 0 : 1 

MR-5231 

Operation: PC f-- PC + (2 X offset) 

Condition Codes: Unaffected 

Description: A way of transferring program control within a range of -12810 to + 12710 words 
with a one-word instruction is provided. 

New PC address = updated PC + (2 X offset) 

Updated PC = address of branch instruction + 2 

7-47 



Example: With the branch instruction at location 500, the following offsets apply. 

New PC Address Offset Code Offset (decimal) 

474 375 -3 
476 376 -2 
500 377 -1 
502 000 0 
504 001 +1 
506 002 +2 

BNE 

Branch If Not Equal (to Zero) 001000 Plus Offset 

15 08 07 00 

o : 0 : 0 : 0 : 0 : 0 : 1 : 0 I 
MR-5232 

Operation: PC +- PC + (2 X offset) if Z = 0 

Condition Codes: Unaffected 

Description: The state of the Z-bit is tested, and a branch is caused if the Z-bit is clear. BNE is 
the complementary operation to BEQ. BNE is used to test inequality following a 
CMP, to test that some bits set in the destination were also in the source following 
a BIT operation, and generally, to test that the result of the previous operation 
was not zero. 

Example: CMPA,B 
BNEC 

compare A and B 
branch if they are not equal 

will branch to C if A =1= B 

and the sequence 

ADD A,B 
BNEC 

add A to B 
branch if the result is not equal to 0 

will branch to C if A + B =1= 0 

7-48 



BEQ 

Branch If Equal (to Zero) 001400 Plus Offset 

15 

Operation: 

Condition Codes: 

Description: 

Example: 

Branch If Plus 

15 

1 : o : 

Operation: 

Condition Codes: 

Description: 

08 07 00 

MR-5233 

PC ;- PC + (2 X offset) if Z = 1 

Unaffected 

The state of the Z-bit is tested and a branch is caused if Z is set. BEQ is used to 
test equality following a CMP operation, to test that no bits set in the destination 
were also set in the source following a BIT operation, and generally, to test that 
the result of the previous operation was zero. 

CMPA,B 
BEQC 

compare A and B 
branch if they are equal 

will branch to C if A = B (A - B = 0) 

and the sequence 

ADD A,B 
BEQC 

add A to B 
branch if the result = 0 

will branch to C if A + B = 0 

08 07 

o : o : o : o : o : o I 

PC ;- PC + (2 X offset) if N = 0 

Unaffected 

OFF:SET 

BPL 

100000 Plus Offset 

00 

MR-5234 

The state of the N-bit is tested, and a branch is caused if N is clear (positive re­
sult). BPL is the complementary operation of BM!. 

7-49 



BMI 

Branch If Minus 100400 Plus Offset 

15 08 07 00 

1 : o : o : o : o : o : o : 1 I OFF~ET 
MR·5235 

Operation: PC ~ PC + (2 X offset) if N = 1 

Condition Codes: Unaffected 

Description: The state of the N-bit is tested, and a branch is caused if N is set. BMI is used to 
test the sign (most significant bit) of the result of the previous operation, branch­
ing if negative. BMI is the complementary function of BPL. 

Bve 
Branch If Overflow Is Clear 102000 Plus Offset 

15 08 07 00 

I 

Operation: PC ~ PC + (2 X offset) if V = 0 

Condition Codes: Unaffected 

Description: The state of the V-bit is tested, and a branch is caused if the V-bit is clear. BVC is 
the complementary operation to BVS. 

BVS 

Branch If Overflow Is Set 102400 Plus Offset 

15 08 07 00" 

o : 0 : 0 : 0 : 1 : 0: 1 

MR-5237 

7-50 



Operation: PC - PC + (2 X offset) if V = 1 

Condition Codes: Unaffected 

Description: The state of the V-bit (overflow) is tested, and a branch is caused if the V-bit is 
set. BVS is used to detect arithmetic overflow in the previous operation. 

Bee 

Branch If Carry Is Clear 103000 Plus Offset 

15 08 07 00 

1 : o : o : o : o : 1 : 1 : o I OFF:SET 

MR-5238 

Operation: PC - PC + (2 X offset) if C = 0 

Condition Codes: Unaffected 

Description: The state of the C-bit is tested, and a branch is caused if C is clear. BCC is the 
complementary operation to BCS. 

Bes 
Branch If Carry Is Set 103400 Plus Offset 

15 08 07 00 

MR·5239 

Operation: PC - PC + (2 X offset) if C = 1 

Condition Codes: Unaffected 

Description: The state of the C-bit is tested, and a branch is caused if C is set. BCS is used to 
test for a carry in the result of a previous operation. 

7-51 



7.3.S.2 Signed Conditional Branches - Particular combinations of the condition code bits are tested 
with the signed conditional branches. These instructions are used to test the results of instructions in 
which the operands were considered as signed (two's complement) values. 

The sense of signed comparisons differs from unsigned comparisons. In signed 16-bit (two's com­
plement) arithmetic, the sequence of values is as follows. 

largest 077777 
077776 

positive 

000001 
zero 000000 

177777 
177776 

negative 

100001 
smallest 100000 

In unsigned 16-bit arithmetic, the sequence is as follows. 

highest 

lowest 

BGE 

177777 

000002 
000001 
000000 

Branch If Greater Than or Equal (to Zero) 

08 07 

7-52 

002000 Plus Offset 

00 

MR-5240 



Operation: 

Condition Codes: 

Description: 

PC -- PC + (2 X offset) if N 'V V = 0 

Unaffected 

A branch is caused if N and V are either both clear or both set. BGE is the com­
plementary operation to BLT. Thus, BGE will always cause a branch when it fol­
lows an operation that caused addition of two positive numbers. BGE will also 
cause a branch on a zero result. 

BLT 

Branch If Less Than (Zero) 002400 Plus Offset 

15 08 07 00 

o : 0 : 0 : 0 : 0 : 1 : 0 : 1 

Operation: 

Condition Codes: 

Description: 

MA-5241 

PC -- PC + (2 X offset) if N 'V V = 1 

Unaffected 

A branch is caused if the exclusive OR of the N- and V-bits is one. Thus, BLT will 
always branch following an operation that added two negative numbers, even if 
overflow occurred. In particular, BLT will always cause a branch if it follows a 
CMP instruction operating on a negative source and a positive destination (even if 
overflow occurred). Further, BLT will never cause a branch when it follows a 
CMP instruction operating on a positive source and negative destination. BLT will 
not cause a branch if the result of the previous operation was zero (without over­
flow). 

BGT 

Branch If Greater Than (Zero) 003000 Plus Offset 

08 07 00 

o : 0 : 0 : 0 

MA-5242 

7-53 



Operation: 

Condition Codes: 

Description: 

BLE 

PC ~ PC + (2 X offset) if Z V (N V V) = 0 

Unaffected 

Operation of BGT is similar to BGE, however, BGT will not cause a branch on a 
zero result. 

Branch If Less Than or Equal (to Zero) 003400 Plus Offset 

Operation: 

Condition Codes: 

Description: 

08 07 00 

MR-5243 

PC ~ PC + (2 X offset) if Z V (N V V) = 1 

Unaffected 

Operation is similar to BLT, however, BLE also will cause a branch if the result of 
the previous operation was zero. 

7.3.5.3 Unsigned Conditional Branches - The unsigned conditional branches provide a means to test 
the results of comparison operations in which the operands are considered unsigned values. 

Bill 

Branch If Higher 

15 

Operation: 

Condition Codes: 

Description: 

101000 Plus Offset 

08 07 00 

MR·5244 

PC ~ PC + (2 X offset) if C = 0 and Z = 0 

Unaffected 

A branch occurs if the previous operation did not cause a carry or a zero result. 
This will happen in comparison (CMP) operations as long as the source has a high­
er unsigned value than the destination. 

7-54 



BLOS 

Branch If Lower or Same 101400 Plus Offset 

Operation: 

Condition Codes: 

Description: 

08 07 00 

MA-5245 

PC ~ PC + (2 X offset) if C V Z = 1 

Unaffected 

A branch occurs if the previous operation caused either a carry or a zero result. 
BLOS is the complementary operation to BHI. The branch will occur in com­
parison operations as long as the source is equal to, or has a lower unsigned value 
than the destination. 

BHIS 

Branch If Higher or Same 103000 Plus Offset 

08 07 00 

MR-5246 

Operation: PC ~ PC + (2 X offset) if C = 0 

Condition Codes: Unaffected 

Description: BHIS is the same instruction as BCe. This mnemonic is included for convenience. 

BLO 

Branch If Lower 103400 Plus Offset 

08 07 00 

7-55 



Operation: 

Condition Codes: 

Description: 

PC +- PC + (2 X offset) if C = 1 

Unaffected 

BLO is the same instruction as BCS. This mnemonic is included for convenience 
only. 

7.3.5.4 Jump and Subroutine Instructions - The subroutine call in the microprocessor provides for 
automatic nesting of subroutines, re-entrance, and multiple entry points. Subroutines may call other 
subroutines (or themselves) to any level of nesting without making special provisions for storage of re­
turn addresses at each level of subroutine call. The subroutine calling mechanism does not modify any 
fixed location in memory, and thus, provides for re-entrance. This allows one copy of a subroutine to be 
shared among several interrupting processes. 

JMP 

Jump 000100 

15 06 05 00 

o : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 I d d : d : d : d 

Operation: 

Condition Codes: 

Description: 

MR-5248 

PC +- (dst) 

Unaffected 

More flexible program branching than that available with the branch instructions 
is provided. Control may be transferred to any location in memory (no range limi­
tation) and can be accomplished with the full flexibility of the addressing modes, 
with the exception of register mode O. Execution of a jump with mode 0 will cause 
an illegal instruction condition, and will cause the CPU to trap to vector address 4. 
(Program control cannot be transferred to a register.) Register deferred mode is 
legal and will cause program control to be transferred to the address held in the 
specified register. Instructions are word data and therefore, must be fetched from 
an even-numbered address. 

Deferred index mode JMP instructions permit transfer of control to the address 
contained in a selectable element of a table of dispatch vectors. 

7-56 



Example: 

First: 

List: 

Jump to Subroutine 

Operation: 

Condition Codes: 

Description: 

JMP FIRST 

JMP @LIST 

FIRST 

transfers to FIRST 

transfers to location pointed 
to at LIST 
pointer to FIRST 

JMP @(SP)+ transfers to location pointed to by the top of the stack and re­
moves the pointer from the stack 

JSR 

004RDD 

09 08 06 05 00 

MA-5249 

(tmp) ~ (dst) (tmp is an internal processor register) 

1 (SP) ~ reg (push reg contents onto processor stack) 

reg ~ PC (PC holds location following JSR; this address is now put in reg) 

PC ~ (dst) (PC now points to subroutine destination) 

Unaffected 

The old contents of the specified register (the linkage pointer) are automatically 
pushed onto the processor stack, and new linkage information is placed in the reg­
ister. Thus, subroutines nested within subroutines to any depth may all be called 
with the same linkage register. There is no need either to plan the maximum depth 
at which any particular subroutine will be called or to include instructions in each 
routine to save and restore the linkage pointer. Further, since all linkages are sav­
ed in a re-entrant manner on the processor stack, execution of a subroutine may be 
interrupted, and the same subroutine re-entered and executed by an interrupt ser­
vice routine. Execution of the initial subroutine can then be resumed when other 
requests are satisfied. This process (called nesting) can proceed to any level. 

A subroutine called with a JSR reg,(dst) instruction can access the arguments fol­
lowing the call with either autoincrement addressing, (reg) +, (if arguments are 
accessed sequentially) or by indexed addressing, X(reg), (if arguments are ac­
cessed in random order). These addressing modes may also be deferred, @(reg)+ 
and @X(reg), if the parameters are operand addresses rather than the operands 
themselves. 

JSR PC,(dst) is a special case of the microprocessor subroutine call and is used 
for subroutine calls that transmit parameters through the general-purpose regis­
ters. The SP and the PC are the only registers that may be modified by this call. 

7-57 



Example: 

SBCALL 
SBCALL+4 

JSR PC,@(SP)+ is another special case of the JSR instruction. It exchanges the 
top element of the processor stack and the contents of the program counter. This 
instruction is used to allow two routines to swap program control and resume oper­
ation when recalled where they left off. Such routines are called co-routines. 

Return from a subroutine is done with the R TS instruction. R TS reg loads the 
contents of reg into the PC and pops the top element of the processor stack into 
the specified register. 

JSR R5, SBR------. 
ARG 1 
ARG2 

R5 
#1 

R6 R7 
n SBCALL 

SBCALL + 2 + 2M 
CONT 

ARGM 
NEXT INSTRUCTION #1 n CONT 

SBR 

EXIT 

MOV(R5) + ,dstl +----' 
MOV(R5) + ,dst2 

MOV(R5) + ,dst2 

MOV(R5) + ,dstM 
OTHER INSTRUCTIONS 
RTSR5 

SBCALL+4 

SBCALL + 2 + 2M 
CONT 

n-2 SBR 

CO NT n - 2 EXIT 

This example is illustrated in Figure 7-34. 

7-58 



BEFORE: 

AFTER: 

BEFORE: 

AFTER: 

JSR R5, SBR 

(PC) R7 I PC I 

(SP) R6 I n I 
I 

R5 I #1 I 

R7 I SBR I 

l n-2 I 
J R6 

R5 PC+2 

(PC) R7 

(SP) R6 

R7 

R6 

JSR PC, SBR 

PC 

I n 

SBR 

n-2 

L 
I 

~ 
Figure 7-34 JSR Example 

7-59 

STACK 

DATA 0 

DATA 0 

#1 

STACK 

DATA 0 

DATA 0 

PC+2 

MA-52S0 



RTS 

Return from Subroutine 00020R 

15 

o : o : 

Operation: 

Condition Codes: 

Description: 

Example: 

o : o : o : 

PC +- (reg) 
(reg) +- (SP) T 

Unaffected 

o : o : 0 : 1 : 0 0 

03 02 00 

: o : 0 I r : r r I 
MR-5251 

Contents of register are loaded into PC, and the top element of the processor stack 
is popped into the specified register. Return from a nonre-entrant subroutine is 
typically made through the same register that was used in its call. Thus, a sub­
routine called with a JSR PC,(dst) exits with an RTS PC. A subroutine called 
with a JSR RS,(dst) may pick up parameters with addressing modes (RS)+, 
X(RS), or @X(RS) and finally exit with an RTS RS. 

RTS R5 
STACK 

BEFORE: (PC) R7 I SBR 
1 

DATA 0 

(SP) R6 I n I 
#1 I 

PC R5 ... 1 ___ .... 

AFTER: R7.1 PC . 

R6 l n+2 I 
DATA 0 I 

R5 I #1 I 
MR-5252 

7-60 



SOB 

Subtract One and Branch (If =1= 0) 077RNN 

Operation: 

Condition Codes: 

Description: 

09 08 06 05 00 

MR-5253 

(R) +- (R) - 1; if this result =1= 0 then PC +- PC - (2 X offset); if (R) = 0 then 
PC +- PC 

Unaffected 

The register is decremented. If it is not equal to zero, twice the offset is sub­
tracted from the PC (now pointing to the following word). The offset is inter­
preted as a 6-bit positive number. SOB provides a fast, efficient method of loop 
control. The assembler syntax is: 

SOB R,A 

where A is the address to which transfer is to be made if the decremented R is not 
equal to zero. The SOB instruction cannot be used to transfer control in the for­
ward direction. 

7.3.5.5 Traps - Trap instructions provide for calls to emulators, I/O monitors, debugging packages, 
and user-defined interpreters. A trap is effectively an interrupt generated by software. When a trap 
occurs the contents of the current program counter (PC) and processor status (PS) are pushed onto the 
processor stack and replaced by the contents of a two-word trap vector containing a new PC and PS. 
The return sequence from a trap involves executing an RTI or RTT instruction that restores the old PC 
and PS by popping them from the stack. Trap instruction vectors are located at permanently assigned 
fixed addresses. 

Emulator Trap 

Operation: 

a : 0 : a : 1 

1 (SP) +- PS 
1 (SP) +- PC 

PC +- (30) 
PS +- (32) 

08 07 

7-61 

EMT 

104000-104377 

00 

MR-5254 



Condition Codes: N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

Description: All operation codes from 104000 to 104377 are EMT instructions and may be 
used to transmit information to the emulating routine (e.g., function to be per­
Jormed). The trap vector for EMT is at address 30. The new PC is taken from the 
word at address 30, and the new processor status (PS) is taken from the word at 
address 32. 

Example: 

TRAP 

Trap 

CAUTION 
EMT is used frequently by Digital system software 
and is not recommended for general use. 

PS I PS 1 

PC I PC 1 STACK 

BEFORE: 

SP l n I DATA 1 
I 

AFTER: PS I (32) 

PC I (30) I DATA 1 

PS 1 

l n-4 I PC 1 
I 

SP 

MR·5255 

7-62 

104400-104777 

00 

MA-5256 



Operation: 

Condition Codes: 

Description: 

Breakpoint Trap 

15 

1 (SP) ~ PS 
1 (SP) ~ PC 

PC ~ (34) 
PS ~ (36) 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

Operation codes from 104400 to 104777 are TRAP instructions. TRAP and EMT 
instructions are identical in operation, however, the trap vector for TRAP is at 
address 34. 

NOTE 
Because Digital software makes frequent use of 
EMT, the TRAP instruction is recommended for 
general use. 

00 

BPT 

000003 

o : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 

Operation: 

Condition Codes: 

Description: 

1 (SP) ~ PS 
1 (SP) ~ PC 

PC ~ (14) 
PS ~ (16) 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

MA-5257 

A trap sequence with a trap vector address of 14 is performed. BPT is used to call 
debugging aids. The user is cautioned against employing code 000003 in programs 
run under these debugging aids. 

(No information is transmitted in the low byte.) 

7-63 



lOT 

Input/Output Trap 

15 

Operation: 

Condition Codes: 

Description: 

RTI 

1 (SP) - PS 
1 (SP) - PC 

PC - (20) 
PS - (22) 

N: loaded from trap vector 
Z: loaded from trap vector 
V: loaded from trap vector 
C: loaded from trap vector 

00 

a : 1 : a : a 

A trap sequence with a trap vector address of 20 is performed. 

(No information is transmitted in the low byte.) 

000004 

Return from Interrupt 000002 

Operation: 

Condition Codes: 

Description: 

PC - (SP) T 
PS - (SP) T 

N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

00 

MR-5259 

Used to exit from an interrupt or TRAP service routine. The PC and PS are re­
stored (popped) from the processor stack. If a trace trap is pending, the first in­
struction after RTI will not be executed prior to the next T trap. 

7-64 



RTT 

Return from Interrupt 000006 

15 

Operation: 

Condition Codes: 

Description: 

PC <- (SP) T 
PS <- (SP) T 

N: loaded from processor stack 
Z: loaded from processor stack 
V: loaded from processor stack 
C: loaded from processor stack 

00 

MA-5260 

Operation is the same as RTI, however, RTT inhibits a trace trap while RTI per­
mits a trace trap. If new PS has T-bit set, trap will occur after execution of first 
instruction after RTT. 

7.3.5.6 Reserved Instruction Traps - Reserved instruction traps are caused by attempts to execute in­
struction codes reserved for future processor expansion (reserved instructions) or instructions with ille­
gal addressing modes (illegal instructions). Order codes not corresponding to any of the instructions 
described are reserved instructions. JMP and JSR with register mode destinations are illegal instruc­
tions and trap to vector address 4. Reserved instructions trap to vector address 10. 

7.3.5.7 HALT Interrupt - The HALT interrupt is caused by the -HALT line. The -HALT inter­
rupt saves the PC and PS and goes to the restart address with PS = 340. 

7.3.5.8 Trace Trap - The trace trap is enabled by bit 4 of the PS and causes processor traps at the end 
of instruction execution. The instruction that is executed after the instruction that set the T-bit will 
proceed to completion and then trap through the trap vector at address 14. The trace trap is a system 
debugging aid and is transparent to the general programmer. 

7.3.5.9 Power Failure Interrupt - The power failure interrupt occurs when -PF line is asserted. Vec­
tors for power failure are locations 24 and 26. Trap will occur if an RTI instruction is executed in a 
power fail service routine. 

7.3.5.10 Interrupts - See Table 5-3. 

NOTE 
Bit 4 of the processor status can only be &et in­
directly by executing an RTI or RTT instruction 
with the desired PS on the stack. 

7-65 



7.3.5.11 Special Cases (T-bit) - The following are special cases of the T-bit. 

NOTE 
The traced instruction follows the instruction that 
sets the T -bit. 

1. An instruction that cleared the T-bit - Upon fetching the traced instruction, an internal flag, 
the trace flag, was set. The trap will still occur at the end of execution of this instruction. The 
status word on the stack, however, will have a clear T-bit. 

2. An instruction that set the T-bit - Because the T-bit was already set, setting it again has no 
effect. The trap will occur. 

3. An instruction that caused an instruction trap - The instruction trap is performed, and the 
entire routine for the service trap is executed. If the service routine exits with an RTI or in 
any other way restores the stacked status word, the T-bit is set again, the instruction follow­
ing the traced instruction is executed, and, unless it is one of the special cases noted pre­
viously, a trace trap occurs. 

4. Interrupt trap priorities - When multiple trap and interrupt conditions occur simultaneously, 
the following order of priorities is observed (from high to low). 

1. Halt line 
2. Power fail trap 
3. Trace trap 
4. Internal interrupt request 
5. External interrupt request 
6. Instruction traps 

7.3.6 Miscellaneous Instructions 

HALT 

Halt 000000 

15 00 

o : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 I 

Operation: 

Condition Codes: 

Description: 

1 (SP) ~ PS 
1 (SP) ~ PC 

PC ~ restart address 
PS ~ 340 

Unaffected 

MR-5261 

The processor goes to the restart address after placing the current PC and PS on 
the stack. PS is initialized to 340. 

7-66 



Wait for Interrupt 

Condition Codes: 

Description: 

Reset External Bus 

15 

WAIT 

000001 

MR·5262 

Unaffected 

In WAIT, as in all instructions, the PC points to the next instruction following the 
WAIT instruction. Thus, when an interrupt causes the PC and PS to be pushed 
onto the processor stack, the address of the next instruction following the WAIT is 
saved. The exit from the interrupt routine (i.e., execution of an RTI instruction) 
will cause resumption of the interrupted process at the instruction following the 
WAIT. 

00 

RESET 

000005 

o : 0 : 0 : 0 : 0: 0: 0 : 0 : 0 : 0 : 0 : 0: 0 : 1 : 0 : 1 I 

Condition Codes: 

Description: 

MR-5263 

Unaffected 

The - BCLR line is asserted and the mode register is loaded. - BCLR is negated, 
and an ASPI transaction takes place. PC, PS, and RO-R5 are not affected. 

MFPT 

Move from Processor Type Word 000007 

Operation: 

Condition Codes: 

Description: 

00 

MR-7198 

RO +-- 4 

Unaffected 

The number four is placed in RO telling the system software that the processor 
type is Micro/T-l1. 

7-67 



7.3.7 Condition Code Operators 

CLNSEN 
CLZ SEZ 
CLV SEV 
CLC SEC 
CCCSCC 

Condition Code Operators 0002XX 

15 05 04 03 02 01 00 

I a : a : a : a : a : a : a : a : 1 : a : 1 0/1 I N I z I v I c 

Description: 

MR-5266 

Condition code bits are set and cleared. Selectable combinations of these bits may 
be cleared or set together. Condition code bits corresponding to bits in the condi­
tion code operator (bits 0-3) are modified according to the sense of bit 4, the 
set/clear bit of the operator (i.e., set the bit specified by bit 0, 1,2, or 3, if bit 4 is 
a one). Corresponding bits are cleared if bit 4 = O. 

Mnemonic Operation OPCode 

CLC Clear C 000241 
CLV Clear V 000242 
CLZ Clear Z 000244 
CLN Clear N 000250 
SEC Set C 000261 
SEV Set V 000262 
SEZ Set Z 000264 
SEN SetN 000270 
SCC Set all CCs 000277 
CCC Clear all CCs 000257 

Clear V and C* 000243 
NOP No operation 000240 

*Combinations of the above set or clear operations may be ORed together to form combined instructions. 
Clear V and C represents CLC (241) ORed with CL V (code 242). 

7-68 



8.1 INTRODUCTION 

CHAPTER 8 
THEORY OF OPERATION 

This chapter provides an explanation of SBC-ll/2I hardware operation from the perspective of the 
logic designer. It is useful for troubleshooting the device to the chip level. 

NOTE 
The negated or inverse signal is designated by a 
minus sign (-). For example, RAS is normally low 
and asserted high when activated; - RAS is nor­
mally high and asserted low when activated. This 
convention is used throughout this chapter. The LSI-
11 bus signals are consistent with the standard bus 
conventions. 

The SBC-II/21 functional block diagram is shown in Figure 8-1 (sheets I and 2) and provides an over­
view of the module functions and how they are related. The main components of the single-board com­
puter are shown on sheet 1 of Figure 8-1. The single-board computer has a microprocessor inter­
connected to the serial line units, RAM memory, ROM memory, and the parallel I/O interface via the 
on-board TDAL bus. The TDAL bus can access the LSI-ll bus (BDAL bus) by the bus control func­
tion, shown by broken lines, and is for reference only. The address bus, the memory address decode 
function, and the interrupt control function are also shown on sheet I of Figure 8-1. 

The microprocessor support functions and the LSI-II interface functions are described on sheet 2 of 
Figure 8-1. The microprocessor is shown by broken lines for reference only. The power-up, clock, clock 
control, ready, DMA, and halt functions are used by the microprocessor. The IAK data in, sync, 
read/write, reply time-out, and bus control functions are used to interface the LSI-ll bus to the micro­
processor. 

The functional descriptions used in this chapter define the microprocessor and the input/output signals 
associated with its operation. The support functions, the LSI-II bus interface functions, and the re­
maining single-board computer devices are also described in detail. 

8.2 MICROPROCESSOR 
The microprocessor is contained within a 40-pin LSI chip and is shown in Figure 8-2. There are eight 
I6-bit general-purpose registers (RO-R 7). R6 operates as the stack pointer (SP); R 7 operates as the 
microprocessor program counter (PC). A special purpose status register contains the current processor 
status word (PSW). The operating characteristics of the microprocessor are affected by the mode regis­
ter which is discussed in detail in Paragraph 8.3. 

8.2.1 Microprocessor Initialization 
The microprocessor initializes the SBC-ll /21 module during the power-up sequence or when the RE­
SET instruction is executed. 

8-1 



THAlT All BClR BClR THAlT 

TEVNT ~ ~ TEVNT 

ROll ~ ~ 
RDL1 

XDL1 ~ 
RBS7 ADl ADl SERIAL LINE XDL1 

RDl2 F:O;-- ~ ~ 
INTERFACE 

RDl2 ~ SHEET 2 
UNITS 1 & 2 

XDl2 CAS -CSDL1 XE58 XDl2 

PCO INTERRUPT ~ MICRO ~ 
XE59 

PC3 CONTROL 

~ :~~~ 
PROCESSOR ADDRESS -READ 
XE57 lATCH 

~0-15 ~BIR04l E48 ~ 
~ -SElO E56 r---+READ r lBS7 I CSDlO. 

BHAlT l ~ TO SHEET 2 

I-CSDL1 • ADl PCO 
BEVNT l 

~ 
~ 

~ ~ 
.... PC3 

-IAK 

~ MEMORY ~ BClR PARAllEL 

~EET2 1/0 

-RsTNC 

ADDRESS -CSPl -CSPl INTERFACE 
M25 DECODE -READ E60 ~ DATA ADDRESS BUS TDAl8-TDAl 12~ -CSRAM 

0-
XE39 

I 
~ ~07 ~ 

-CSKTA 
FROM 

,~ SHEET 2 

i§-1--1 I-CSOB -CSRAM 

"BUS .;j -WlB 
Vl 

~ ::l BDAlOO-15 CONTROL !E;X TDAlOO-15 ~ 
~~~~T2~ l -WHB 

~15 al

"' LS~H:~ 'Q
l -READ

RAM
MEMORY

Ui E38 ...J I - E53 -CSOB READ

~~~~T2~ ~ BDAl 0,1,2 BDAlO, 1,2 DC004 -WlB 

BDIN l J l BDIN l PROTOCOL -SEl6 

BDOUT l-J l 8DOUT l 
E19 

BWBT l ) l BWTBT l 

BRPlY ~ BRPlY l 

$' 
AD1-AO~ ADDRESS BUS 

... ;.- I -READ"' 
ROMIRAM 

" 
l -WlB MEMORY 

~~~~T2~ 
MODE l -WHB SOCKETS

TDAl8, 11, 13, 14, 15 00 XE44 XE45 REGISTER
CONTROL If' -CSKTA XE54 XE55

~ l -CSKT8

~
~ y<" DATA ADDRESS BUS TDAl 00 TDAl 15

Figure 8-1 SBC-ll/21 Functional Block Diagram (Sheet 1 of 2)

8-2

~ BWTBT l '" ~

~ BDIN l

PROCESSOR CONTROL SIGNALS ~ BDDUT l

~ RAS RRPlY BINIT l
-SEL 1 ~ ~ IIIIIl -CSQB BSYNC l
RAS ~ REPLY -L READ/ TDIN TIME-OUT -IAK BBS 7 l
-BClR -C SYNC

WRITE TDOUT READ RBS7
T ClK SP TSYNC SYNC - ~ -DRRPlY TREAD

-BClR r l
BUS

SEl1 CONTROL
-DMG

IAK DIN ;--r-r-
DMG DMG

-TMRP

~ SYNC SYNC
SEl1 r-r-- TIAKO
SEL 0

-RAS ... 7
CAS

-CDMRQ --- -, -BelR DMA

COUT TREAD I I
BDMRl TMER I I

~ ~ I I
BDMGDL -CTMER

CAS HALT I
-SEl1 PI I I - SElO -BClR

I I
RAS IAK I
COUT DATA BIAKO -TMRP I

IN
I ~~'Z:c~SSDR I

-BClR SYNC

~ IAKDIN I XE57 I
TClKSP I (SEE SHEET 1) I

T ClK SP

READY J ~ J
COUT

PRDCESSOR CONTROL SIGNALS ~ -BClR PROCESSOR
READY I CONTROL

l
SYNC ~ I SIGNALS

CAS TClK SP - -CAS I
""\ L

CLOCK I
-BClR DClO -BClR CONTROL I I

BPDK H PUP ~ I
~ POWERUP I CLOCK SClK -DRRPlY I I

-TClK I
;--

I I DlClK
TO SHEET 1 - I I

PUP
I

DCLD
TO SHEET 1 I I

POWER FAil ___ .J
PROCESSOR CONTROL SIGNALS

Figure 8-1 SBC-llj21 Functional Block Diagram (Sheet 2 of 2)

8-3

-CTMER

-PFAI L

ENCODED
INTERRUPT
INPUTS

-CDMRQH

-TCLK

READY

-PUP

AI-7 TDAL 15

AI-6
TDAL14

TDAL13
AI-5 TDAL12

AlA
TDAL 11
TDAL 10

AI-3 TDAL 09

AI-2
TDAL 08

TDAL 07
AI-l TDAL 06

AI-O
TDAL 05
TDAL 04
TDAL 03

XTL1
TDAL 02
TDAL 01

r MICROPROCESSOR TDAL 00
XE57

SELO

READY
SELl

R/-WHB.
R/-WLB

PUP -RAS

-CAS

PI

COUT

-BCLR

Figure 8-2 SBC-II/21 Microprocessor

TDAL
BUS

}
TRANSACTION
TYPE
CONTROL

}

TRANSACTION
CONTROL
STROBES

RESET

8.2.1.1 RESET Instruction - The RESET instruction asserts the - BCLR output. This clears or resets
the control logic of the module to an initial state. The microprocessor loads the mode register from the
TDAL bus with the mode register control data. The LSI-ll bus transceivers are disabled when
- BCLR is asserted. The RCVIE bit of the RCSRs and the XMITIE, MAINT, and XMITBRK bits of
the XCSRs are reset in the serial line units (SLUs). The port C buffer output lines of the parallel I/O
are set high. If port A and port B buffers are output to the connectors, they are also set high. The LED
is turned off during reset. The - BCLR output is then negated and an assert priority in (ASPI) transac­
tion is performed to service any interrupts or DMA requests. The RESET instruction does not change
the PSW or any internal registers.

8.2.1.2 Power-up Input (PUP) - The power-up (PUP) input goes from low to high when the 5.0 V
power is first applied. This initiates the power-up sequence_ The - BCLR output is asserted. The mod­
ule is cleared and reset as it is for the RESET instruction, however, the serial line units' (SLUs) regis­
ters are completely reset. After a delay, BDCOK and BPOK are asserted, PUP is negated, and the
- BCLR output goes high. The microprocessor then performs ten bus NOP transactions. The processor
loads the starting address into the program counter (R7), location 376 into the stack pointer (R6), and
the processor status word is set to 340. An assert priority in (ASPI) transaction is performed to service
any interrupts or DMA requests before the first instruction is fetched.

8-4

The PUP input normally stays low for all operations. If PUP is asserted high, the present transaction is
terminated and the internal registers go to an undetermined state. The TDAL bus, the interrupt inputs,
and the microprocessor control signals will all go to an initial reset state.

8.2.2 Clock Input (-TCLK)
The - TCLK input is a 4.9152 MHz clock that comes from the 19.6608 MHz crystal oscillator. This
clock input is used for the internal time base of the microprocessor and the source of the clock output
(COUT). COUT is pulsed once for every microcycle. A microcycle can represent either three or four
- TCLK input pulses depending on the type of transaction. The microprocessor will halt or stop when
the - TCLK input is disabled.

8.2.3 Ready Input (READY)
READY input is normally high and will not interfere with microprocessor transactions. However, when
the input is held low, a single microcycle slip occurs during every transaction. When READY is
clocked with COUT, while RAS is asserted, the microprocessor slips a microcycle every time the input
is pulsed. This allows the microprocessor to be placed in an idle or wait state until a peripheral device
has either received or asserted data on the bus.

8.2.4 Microprocessor Control Signals
The microprocessor controls the functions of the SBC-ll /21 through the use of nine microprocessor
control signals. A description of these signals and their functions follows. The RAS, CAS, PI, COUT,
and BCLR are transaction control strobes used for logic transitions. The R/ - WLB, R/ - WHB,
SELO, and SEL I are steady state logic signals used as transaction type control signals.

8.2.4.1 Row Address Strobe (RAS) - The leading edge of the RAS signal is used to acknowledge that
the address is stable on the TDAL bus during read/write and fetch transactions. During interrupt trans­
actions, the leading edge of the RAS signal strobes the interrupt acknowledge data onto the TDAL
12-8 bus lines.

8.2.4.2 Column Address Strobe (CAS) - The trailing edge of the CAS signal is used to acknowledge
that data on the TDAL bus lines during read and fetch transactions was read by the microprocessor.
For write transactions, the signal is used to acknowledge that microprocessor data will be removed after
a specified time.

The leading edge of the signal is used to request that read data be placed on the TDAL bus· and to
strobe interrupt requests into latches that are read during the assertion of PI.

8.2.4.3 Priority In (PI) - The leading edge of the PI signal is used to acknowledge that data on the
TDAL bus lines during write transactions is stable. The leading edge is also used to enable the micro­
processor to read the interrupt inputs AI-O to AI-7 and to initiate IAK, restart, power fail, or DMA
transactions.

8.2.4.4 Read/Write (R/ - WHB and R/ - WLB) - The R/ - WHB and R/ - WLB signals control the
read/write and fetch transactions by enabling the TDIN, TDOUT, and TWTBT control signals. For
read and fetch transactions, both signals are asserted high and enable the TDIN control circuits. Dur­
ing write transactions, the TDOUT and TWTBT control circuits are enabled when either or both sig­
nals are asserted low. If only one signal is asserted low, the TWTBT control circuits are enabled by the
leading edge of CAS, and a write byte transaction occurs for either high byte or low byte.

8.2.4.5 Select Output Flags (SELO and SELl) - The SELO and SELl signals indicate the transaction
being performed. When both signals are low, a read, write, ASPI, or NOP transaction is selected. When
both signals are high, a DMA transaction is selected. When SELl is low and SELO is high, the fetch
transaction is selected. When SELl is high and SELO is low, an IAK transaction is being performed.

8-5

8.2.4.6 Bus Clear (BCLR) - The BCLR signal is used to reset the control logic and generate BINIT.
The signal is asserted during the power-up sequence and the execution of a RESET instruction only.

8.2.4.7 Clock Out (COUT) - The COUT signal is asserted once for every microcycle and is used to
time the microprocessor transactions:

8.2.5 Microprocessor Transactions
The microprocessor performs six types of transactions to support the instruction set, direct memory
access, and the interrupt structure.

1. Fetch/read
2. Write
3. DMA
4. IAK
5. ASPI
6. Bus NOP

A normal fetch/read or IAK transaction requires either one or two microcycles; extended transactions
can take as many microcycles as required before a time-out occurs. The COUT signal is asserted once
for every microcycle. The transactions are used to transfer information and data via the TDAL bus
which interconnects all local devices and connects them to the LSI-II bus interface. A description of
each transaction operation follows.

8.2.5.1 Fetch/Read - The fetch/read transaction is used either to fetch an instruction or read data for
the microprocessor. The data may originate from the on-board memory, I/O device, or the LSI-ll bus.
The microprocessor control signals for the transaction are illustrated in Figure 8-3. The R/ - WLB and
R/ - WHB control signals are asserted. The SELO output is high, and the SELl output is low for the
fetch transaction; both of these outputs are low for the read transaction.

The following sequence of events takes place during a fetch/read transaction.

1. The microproc~ssor places the address onto the TDAL bus when the transaction is initiated
and is latched into the memory address circuits by the assertion of SYNC.

2. The data is received on the TDAL bus after RRPL Y is received. The microprocessor accepts
the data and negates TDIN.

3. Interrupt and DMA requests are latched by CAS, set up while PI is asserted, and latched
into the microprocessor when PI is negated.

NOTE
A write transaction is always preceded by a read
transaction except when the microprocessor pushes
onto the stack. Therefore, each write has at least
four microcycles: assert address, read data, assert
address, and write data.

8-6

r:I---------FETCH/READ hTIR.ANSACTION --------j.-t
... ·-I----ASSERT ADDRESS---•• foII·-I------READ DATA---....,'~

NOTE 2

COUT ____ 1 \~ _____ -J/ ,'---___ _

6g~1~::x ____ A_D_D_R_E_S_S ____ JX~ __________________ ~{ ______ D_A_TA __ 1N ____ ~x==

AI.O-AI.;J\o..... ___________________________ (.a.-_I_N:.:.~E::.:~:::.;~::..:~~~:...:.TM_A ___ }'--____ _

RAS ________ ~i \
I

PI ___ --+:_------~/ \
CAS ___ -+: ____ ~I

I I
\
I
I L I
I

R/-WLB-:]

I L I
I
I C I
I

R/-WHB...J I
I I

SELO"'l-----i--N~~E_, ---j -- --'I
--- I I '

I

'--I
I

..., I I
SE L 1 __) ______ --I' _________ --I'fo-____________________ +-_____ -I,

- I I

) I

NOTES:
1. SELO IS HIGH FOR FETCH TRANSACTIONS

AND LOW FOR READ TRANSACTIONS.
2. LSI·11 BUS TRANSACTIONS CAN CAUSE THIS

PORTION OF TIME TO SLIP UNTIL THE
DEVICE RESPONDS OR TIME·OUT OCCURS.

Figure 8-3 Fetch/Read Transaction

8-7

I

'-I
I
I

'--I
I

X

MR-6635

8.2.5.2 Write - The write transaction is used to write data from the microprocessor to memory, a local
I/O device, or an LSI-II bus peripheral device. The microprocessor control signals for the transaction
are illustrated in Figure 8-4. The R/ - WLB and R/ - WHB control signals are asserted low when writ­
ing a word; for writing a byte, either the high or low byte signal is asserted. Both SELO and SELl
control signals are negated.

The following sequence of events takes place during a write transaction.

1. The microprocessor places the address onto the TDAL bus, and the state of the read/write
lines causes TWTBT to be asserted. The address is latched into the memory address circuits
by the assertion of SYNC.

2. When CAS is asserted, TWTBT is negated for word transactions and left asserted for byte
transactions.

3. The data is placed on the TDAL bus before TDOUT is asserted. The data is written into the
addressed location when TDOUT is negated.

4. When the addressed device negates BRPLY, the SYNC and TWTBT signals are cleared.

5. The DMA requests are detected while PI is asserted; they are latched into the micro­
processor when PI is negated. No other interrupts are read by the microprocessor during
write transactions.

8.2.5.3 IAK - If an interrupt request was detected during a previous read transaction, the micro­
processor initiates an IAK transaction as illustrated in Figure 8-5. The R/ - WHB and R/ - WLB con­
trol signals are asserted high, and CAS, PI, and SELO are asserted low for the transaction. The TDAL
bits 12-8 represent the acknowledged input and are used to reset the interrupt request. For local inter­
rupts, TDAL bits 7-0 are ignored because the vector address is in the microprocessor. For LSI-II bus
interrupts, the vector address is read from the bus using TDAL bits 7-2. TDAL bus bit 12 is set low for
this IAK transaction and commands the control logic to initiate an LSI-ll bus IAK transaction. The
TDIN signal is asserted for the transaction, and the TIAKO output acknowledges the interrupt. The
requesting device then places the vector address on the low byte of the bus and asserts BRPLY. The
microprocessor stops slipping microcycles, negates TDIN, and accepts the vector. It then negates
TIAKO on the trailing edge of RAS and continues to the next transaction.

8.2.5.4 DMA - The DMA request is read during a previous transaction. The microprocessor will ac­
knowledge the request by tri-stating the TDAL bus as shown in Figure 8-6. The SELO and SELl out­
puts are asserted to indicate that the bus mastership has been relinquished. The transaction will contin­
ue with no interruptions until the DMA transfer is completed. The microprocessor will then negate the
SELl control output to indicate that it is resuming bus mastership. The negation of SELO will follow if
the next transaction is not a fetch.

8.2.5.5 ASPI - The assert priority in (ASPI) transaction is used by the RESET and WAIT instruc­
tions or the power-up sequence as shown in Figure 8-7. The CAS and PI outputs are asserted to allow
the microprocessor to recognize and latch any interrupts or DMA requests. The R/ - WHB and
R/ - WLB outputs are asserted and the SELO, SELl, and RAS outputs are negated for the transaction.

8.2.5.6 NOP - The bus NOP transaction performs no operation and is used during the power-up se­
quence or if the programmer intentionally introduces a delay into the program. The AI-O through AI-7
inputs are tri-stated to prevent interrupts. The R/ - WHB and R/ - WLB outputs are asserted, and the
SELO and SELl outputs are taken low. The RAS, CAS, and PI control strobes are inhibited during the
transaction as shown in Figure 8-8.

8-8

.... --------WRITE TRANSACTION--------~:~I

.... ---ASSERT ADDRESS---•• ,---WRITE DATA-----~-­
NOTE 3

COUT ___ f \'-_____ ---1/ , _____ _

6~~~==x~ __ A_D_D_R_E_S_S ___ _IX~ ____ JX~ _________ D_A_T_A_O_U_T ____________ x==

AI-O-AI-7J ________________ <.L-_D_M_A_R_E_Q_U_E_ST __ }~_'C.

RAS _____ t
I

PI-----t:---------I
_---
\~--

I I
CAS I I: \ ___ _

R/-WLB\----t---NOTE1--1-----i-----------+---- - -r-
---- I i I I ---

R/-WHB\---T
1
--NOTE1---r----+

I
-----------i ------T

--- - I - I ---
I I I I

SELO\, ___ ~I ____ ~I---~(-----------~(-------'r-
I I I I

~ (I I I r-
SELl \, ____ ~I ______ ~I---~I-------+I---.l1

I I 1

SYNC. ___ ...I! l ~ L
I I

RRPLYH I / I
--------~I---~- _--

I I I

TDOUT __________________ ~:~----Jlr-------------,~--------_

TWTBT \ _______ ~~~ ________ L_
NOTES:

1. R/-WHB OR R/-WLB CAN BE HIGH WHEN
PERFORMING A WRITE BYTE TRANSACTION.

2. TWTBT IS LOW FOR WORD TRANSACTIONS.
3. LSI-ll BUS TRANSACTIONS CAN CAUSE THIS

PORTION OF TIME TO SLIP UNTI L THE DEVICE
RESPONDS OR TIME-OUT OCCURS.

Figure 8-4 Write Transaction

8-9

MR-6636

1ooI14~--- SEE NOTE ,

COUT -----------, ,-----------
TDAL 12-0SJ ______ IN_T_E_R_R_U_PT_RE_Q_U_E_S_T_D_A_TA _______ X=

TDAL 07-00=:x ______ .JX~----V-EC-T-O-R-IN---..J

RAS, _____ -',

SELO=--'~ ____________________ .J

SEL1 __ ..J'

IAKDIN ___ J /

TIAKO / ______J

-IAK _--------------~
TDIN __ ...I1

NOTE:
LSI-11 BUS TRANSACTIONS CAN CAUSE THIS
PORTION OF TIME TO SLIP UNTIL THE DEVICE
RESPONDS OR TIME-OUT OCCURS.

Figure 8-5 IAK Transaction

8.3 MODE REGISTER CONTROL

MR-6637

The mode register is an internal microprocessor register used to define the operating mode of the micro­
processor. The 16-bit mode register is written into from the TDAL 0-15 data lines during a power-up
sequence or when a RESET instruction is executed. During this time, the - BCLR output is low and
the mode register is loaded. The mode register logic (Figure 8-9) has five tri-state drivers that are en­
abled when the - BCLR input goes low. TDAL bits II and 8 are factory set to force the micro-
processor to operate in the following mode. .

1. The microprocessor clock mode is selected. The microprocessor pulses the COUT output
once for every four XTLI input pulses during DMA and interrupt transactions. For all other
transactions, it pulses the COUT output once for every three XTL I input pulses.

2. The standard microcycle mode is selected. It uses four XTLI input periods for DMA and
interrupt transactions and three XTLI input periods for all other transactiQns.

3. The normal read/write mode is selected. The normal read/write mode sets the read/write
control lines (R/ - WLB and R/ - WHB) prior to the assertion of - RAS and remains valid
after the negation of - CAS.

8-10

COUT f\~----~~,-----~~,---

AI-O \"' ___________________ __JLl.... _ ~~~O~~ ___ _

RAS \ '-----~/ \
CAS ~ _____________ __J/ \ \

PI \ ----------------~/ \
R/-WHB-- - - - -) TRI-STATE C
R/-WLB_ _____ '"--------..:..:.:..:..;;:.:..;.;.:.=------------1. __ _

SELO ______ ~/

SEL 1 ______ -.J/
C

\ ------

DMG ______ -J/~---------------------

TDMGO _______ ~r---\~ __________________ __
RDMR \ -----------------------

RSACK __________ ~I

NOTE:
AI-O IS ASSERTED LOW UNTIL BSACK IS NEGATED
AND NO OTHER RDMR IS BEING ASSERTED.

Figure 8-6 DMA Transaction

,
\

_----------

MR-6638

4. The static memory mode is selected, and therefore, no dynamic memory chips may be in­
stalled on the module. The refresh function is disabled.

5. The memory addressing is limited to 64Kb.

6. The bus has 16 bits.

7. The user mode is selected. This mode performs transactions with no automatic test of the
processor status word.

8-11

COUT~--------J' \\.-___ 1\...

TDAL) TRI-STATE (00-15 ___ ---')-----...;..;.;~;.;..;.;.=-----~'_ ______ _

AI-O-AI-7~~~~~~~ (~ _______J{ ... I..:NR.:.:TE:.:;~~~:;.:;~;:;:f:.:.TM_A }t..__.t.} ______ _

------,
RAS \

r---------
I - -----_\~---------------~

CAS ________ , ,'"-------
PI~ ___ -------~/ ,'---------

R/-WHB; \---------
R/-WLB ______ -l '--_______ _

SELO------\ ,'---------
SEL1 _______ ,~ ______________ __I.I __ ________ _

MR·6639

Figure 8-7 ASPI Transaction

COUT _______ ,.." ,"-_____Ir

TDAL -------V PREVIOUSLY LATCHED DATA :-------00-15 ______ -" __________ ~--------I\..--____ _

AI-O-AI-7 =~===)~--------..:T.;.R;.;.I-.;;S:.:.T:..;A:.:.T.:;.E--------<C~_=__-_-_~-=

-,
RAS \

__ ~I ______ -----------------------

\
CAS \

__ I~ _____ ------------------------,
PI \

__ ~I ______ -----------------------

R/-WHB-------;
R/-WLB _____ -oJ

,
\ L ______ _

------, r-------
SELO \ I ______ -i\~ _________________ _', _______ _

------,
SELl \ ______ lo' ________________________ _

MR-6640

Figure 8-8 BUS NOP Transaction

8-12

Z1 M18 M22
+5 V----'No 0 TDAL15

M26
TRI-STATE TDAL14

M29 M30 DRIVERS
E41 TDAL13

TDAL11

TDAL8

-=

-BCLR
MR·7519

Figure 8-9 Mode Register Control

The status of TDAL bits 13-15 are selected by the user. These bits determine the start and restart
addresses for the microprocessor. The start address is the location of the first fetch after power-up, and
the restart address is the location of a fetch after a HALT instruction is executed or the assertion of the
HALT interrupt. The wirewrap pins M22, M26, and M30 control the status of TDAL bits 13-15 dur­
ing the power-up sequence. Wirewrap pin M18 is pulled up to +3 Vdc and represents a one; wirewrap
pin M29 is connected to ground and represents a zero. Pins M22, M26, and M30 are jumpered to either
M18 or M29, according to the list in Table 8-1, to select both the start address and restart address for
the microprocessor.

Table 8-1 Start Address Configurations

Wirewrap Pins Start Address Restart Address

Bit 15 Bit 14 Bit 13
M22 M26 M30

1 1 1 172000 172004
1 1 0 173000 173004
1 0 1 000000 000004
1 0 0 010000 010004
0 1 1 020000 020004
0 1 0 040000 040004
0 0 1 100000 100004
0 0 0 140000 140004

Connection to M 18 = 1
Connection to M29 = 0

8-13

8.4 INTERRUPT CONTROL
The interrupt control, as a block diagram, is illustrated in Figure 8-10. (Studying this diagram will
make the explanation presented in Paragraph 8.4.1 easier to follow.)

OTHER
SIGNALS

REVNT

PARQST

PBRQST

BKRQ

SlUl

HALT

P FAil

DMRQ

9 ADDRESS

LINES

MI CROPROCESSOR

AI-7

AI-6

AI-O

____ ...1-

AI-l TOAI-4
-----"

PRIORITY
INTERRUPT
ENCODING
MEMORY
512X4
ROM
E33

XE57
EN

XE58
RDLlI--r-t-L"':':'=':'::"'-j

EN

XDLl

RDl2 r--r-...... ,..:;.;;=~--I 6

XDl2
XE59

SlU2

4 RESETS

INTERRUPT
ACK
DECODER
MEMORY
32X8 ROM
E40

TDAl8-11

Figure 8-10 SBC-ll/21 Interrupt Control

The SBC-11/21 interrupt control design includes the following elements:

1. Five D flip-flops that latch five of the interrupt lines.

a. REVNT
b. PARQST
c. PBRQST
d. BKRQ

Wire OR-ed TEVNT or BEVNT
Parallel I/O port A interrupt request
Parallel I/O port B interrupt request
Level 7, maskable interrupt, configurable

BUS
INT BIAKO
ACK
E8,E15

TDAl8-11

DECODE

IAK

E34

e. HLTRQ Produces CTMER, nonmaskable interrupt, configurable

2. Twelve interrupt synchronizing latches that latch the following signals.

a. Outputs of the five latches described previously

8-14

b. Three interrupt signals:

(1) IRQ4
(2) DMRQ
(3) PFAIL

Level 4 LSI-ll bus interrupt
DMA request
Power fail nonmaskable interrupt

c. Four signals from the interrupt acknowledge decoder, wire OR-ed with interrupt
requests from SLUs.

(1) RDLI
(2) XDLI
(3) RDL2
(4) XDL2

SLUI receiver interrupt request
SLUI transmitter interrupt request
SLU2 receiver interrupt request
SLU2 transmitter interrupt request

The operation of the SBC-11 /21 interrupt control centers around eight microprocessor input lines, AI-O
to AI-7, driven by interrupt signals, either directly or indirectly, through the interrupt encoding PROM.

• AI-O is the DMA request line connected directly to DMRQ.

• AI-l to AI-4 are driven by the output of the interrupt encoder to request maskable interrupts.

• AI-5 is driven by the VEC gate which detects the presence of the LSI-II bus interrupt on the
outputs of the interrupt encoder. It calls for a vector read transaction from the bus.

• AI-6 is driven directly by the power fail input line to force a power fail trap.

• AI -7 is driven directly by the HALT interrupt line to force a restart trap.

The microprocessor reads the AI-O to AI-7 input lines and arbitrates the interrupt priority according to
Table 8-2. In addition, the state of AI-l to AI-5 is reproduced on TDAL 12-8 lines during the acknowl­
edge cycle. TDAL 11-8 lines are used as an address in the interrupt acknowledge decoder, which is a
32-byte PROM. Output bits 7-4 of that PROM are the previously stated SLU receive and transmitter
interrupt requests (RDLl, RDL2, XDLl, XDL2) which are wire-ORed to reset the latched requests in
the SLUs. TDAL 12 reflects the state of the - VEe signal and is used in the LSI-II bus protocol.

Bits 0-3 are used as reset signals for the four interrupt latches previously described.

8.4.1 Interrupt Control Logic
The interrupt logic (Figure 8-11) receives the interrupt requests from the interface devices and applies
them to the microprocessor. The microprocessor will acknowledge the highest priority interrupt if its
priority is higher than the current microprocessor status word priority. There are nine interrupts avail­
able, and either one or all can be inputs to the interrupt synchronizers E27 and E32. Any interrupt is
active when the signal goes high. Five of these inputs are latched and stay high until reset. Four inter­
rupts are clocked through flip-flops EI0 and E17 to maintain a high output. The enabled interrupts are
clocked through the interrupt flip-flops by CAS asserting during the present transaction. These outputs
address interrupt encode memory locations enabled by the - PI input of the present transaction. The
interrupt encode memory outputs an interrupt code equivalent to the highest input priority.

8-15

Table 8-2 Designated Interrupts

Interrupt Input Priority Coded Input Vector
Source Signal Level AI-l AI-2 AI-3 AI-4 AI-5 Address

HALT HLTRQ Nonmaskable X X X X X Restart
address

Power fail PFAIL Nonmaskable X X X X X 24

LSI-II bus BKRQ 7 0 0 0 0 1 140
signal BHAL T

LSI-II bus REVNT 6 0 1 0 0 1 100
signal BEVNT

SLU2REC RDL2 5 1 0 0 0 1 120

SLU2XMIT XDL2 5 1 0 0 1 124

Parallel I/O B PBRQST 5 1 0 0 1 130

Parallel I/O A PARQST 5 1 0 1 1 1 134

SLU1REC RDL1 4 1 1 0 0 1 60

SLU1 XMIT XDL1 4 1 1 0 1 1 64

LSI-ll bus IRQ4 4 1 1 1 0 0 Read
signal BIRQ4 from

LSI-II
bus

HALT and power fail (PFAIL) interrupts are not generated by the coded inputs AI-l to AI-S. All signals are listed in the order
of descending priority.

The interrupt codes and their priority levels are listed in Table 8-2. When the PI output is enabled, the
microprocessor looks at the interrupt inputs and will initiate an IAK transaction for an interrupt with
the correct priority following the completion of a read transaction. The coded input to the micro­
processor is placed on the TDAL bus using bits 8-12. Bit 8 represents the AI-I, input; bit 11 represents
the AI-4 input. These four TDAL bus bits are inputs to the acknowledge decoder memory that is en­
abled when the microprocessor starts the IAK transaction and the - IAK input goes low. These inputs
are decoded to determine which interrupt was acknowledged and will output a low to negate that inter­
rupt. The interrupt flip-flop is reset by the clear line for that interrupt, switching the output of the
selected AND gate low. The E59 and E58 transmitter and receiver interrupt lines are latched outputs
and are reset by wire OR-ing and asserting low the output of the acknowledge decoder PROM. The
LSI-II bus interrupt is an exception to this process. This interrupt code enables the inputs of NAND
gate E34, and the low output enables the - VEC (AI-5) input to the microprocessor. This input in­
structs the microprocessor to receive the vector address from the TDAL bus. TDAL 12 represents the

8-16

PI
IR04 l

ROll
XOLl
ROl2
XOl2

02
~++1-----------------------~06

~~+=============107 I- 04

02 AO

04 Al

03 A2
1----L..------------------------t03 05 A3

-IAK

EN

OM AI-4

1M AI·3

E33 2M

3MI-+-+-r-------""""­
r--r----r-+3 VC INTERRUPT 01 A4 INTERRUPT

"-,,TO=Al=-.cl -,,-O -------tA2
-':'TD=A=l9'--___ -lAI

.!.!TD"'-A"-'l8'--___ -lAO

H--'-=PB""RO::.ST'---______ --tD5 FLlp·FlOPS 06

E27 Q7

00

A5 ~~g~DE
A6512X4

ACKNOWLEDGE

A7

AS

DECODER 83

-BelR
PCO
PC3

MEMORY

E40
32 X S

ClK

B2

CBKRQ

BO

Bl

Figure 8-11 Interrupt Control Logic

state of the - VEC input when the microprocessor acknowledges the interrupt and is used to determine
that the LSI-II bus interrupt acknowledge handshake protocol must be initiated. The LSI-II bus inter­
rupt is not reset by the acknowledge decoder PROM, but it should be reset when the TDIN and TIAKO
signals are received by the bus device during the interrupt acknowledge sequence.

Before continuing the discussion of the interrupt system, ready logic is discussed in Paragraph 8.4.2.

8.4.2 Ready Logic

NOTE
The waveform diagrams shown in Figure 8-12 and
subsequent figures are referenced to the circuit sche­
matics in Appendix E. They are intended only to
help users understand the logic and are not precise
representations of timing relationships.

The ready logic (Figure 8-12) provides the READY input to the microprocessor and is used to control
the cycle slip function. The microprocessor will cycle slip when the READY input is being clocked
while RAS is asserted; the cycle slip function will be inhibited when the READY input is set high. The
output of the ready flip-flop and the COUT input go to the E14 OR gate and generate the READY
input. When the -CSLIP input to E6 is high and the TSYNC input is high, the output of the E6 AND
gate goes high. When -DRRPLY is not asserted and - TCLKSP and the output of E14 are high, the
output of E13 is high. This enables E35 and the preset input to the E20 flip-flops to go low. The flip­
flop output is low at OR gate E14, and it enables the READY input with every COUTo When the

8-17

-TMRP

- TCLKSP
-DRRPLY

IAKDIN

-CSLlP

TSYNC
E6

COUT

-BCLR

E20

TSYNC E4 PIN 5
-CSLlP L E6 PIN 1

-CSOB E39PIN6
IAKDIN E14 PIN 4

RAS E31 PIN 13
___ -CAS E46 PIN 15

-TMRP E26 PIN 10
-DRRPLY E5 PIN 6

------------------------------ COUT
-ROSLP

E13 PIN 12

E20 PIN 3
E20 PIN 8 ------------------~-----------

------------ READY E14PIN 11

.------------------------- --- - - - --------------- --------- TCOUT E14PIN 13
E20 PIN 12

A, SIGNALS DURING LSI-11 BUS TRANSACTION

_------TSYNC E4 PIN 5
CSLlP L E6 PIN 1

CSOB E39 PIN 6 _____________________ IAKDIN E14 PIN 4

------RAS E13 PIN 1
~-________ -CAS E46 PIN 15

:-----------TMRP E26 PIN 10

~-----~-- -DRRPLY E5 PIN 6

E13 PIN 12

----_ --------------- - - ------ COUT E20 PIN 3
E20 PIN 8
E14 PIN 11

-ROSLP
READY

TCOUT E14 PIN 13

_:::::::::::::::::::::::::::~:::::::::::: E20PIN5 - CSRAM E39 PIN 1n

B. SIGNALS DURING LOCAL TRANSACTION

Figure 8-12 Ready

8-18

Rl READY

MR-7506

IAKDIN input goes high and the -CSLIP and TSYNC inputs are negated, the output of the E13
AND gate goes high. It allows the E35 NAND gate output to go low and forces the preset terminal of
the E7 flip-flop low. The output of the flip-flop to the OR gate is now low. This allows the COUT input
to clock the READY output. The microprocessor will continue to cycle slip while this input is being
pulsed. The - TMRP input to the NAND gate will go low when either the BRPL Y or TMER input
from the bus is received. This will remove the low from the preset input of the first flip-flop. Immedi­
ately after the - TMRP input goes low, the -DRRPLY input also goes low and forces a high to the
input of the flip-flop. The high is clocked through by the COUT clock, and the flip-flop output to E14
will go high. This disables the READY input to the microprocessor and allows the transaction to be
completed.

The second E20 flip-flop is required to ensure that data is stable at the microprocessor or at the periph­
eral preceding transaction completion. The ready circuit is inactive during local address references.

8.4.3 IAK Data In (IAKDIN)
The IAKDIN output is enabled by the output of the NOR gate E15 as shown in Figure 8-13. The
microprocessor acknowledges an external interrupt request, asserts -SELl, and negates SELO. When
the microprocessor has to read the interrupt vector from the bus, the TDAL 12 input is low as a result
of AI-5 being low during the interrupt request read. This allows the IAKDIN output to go high and
assert TDIN to the bus. The RAS input is high; this enables the TIAKO flip-flop E8. IAKDIN is
clocked by the COUT input and causes TIAKO to go high. The inverter E18 sets the BIAKO output
low. The BIAKO output goes to the bus as an interrupt acknowledge. The TIAKO output goes to the
bus transceiver logic and enables the low byte transceivers to receive the vector. The IAKDIN output
goes to the ready logic and allows the microprocessor to cycle slip until the interrupting device asserts
the - BRPL Y input or a time-out occurs. When either response is received, the SELO input goes high
to disable the IAKDIN output and signals that the microprocessor has read the vector. The RAS goes
low to clear the TIAKO flip-flop.

The microprocessor cannot abort the reading of a vector if a time-out occurs and will read a vector of
zero in all cases if - BRPL Y is not asserted and the time-out counter triggers.

8.4.4 HALT Interrupt
The HALT interrupt (Figure 8-14) is defined as -CTMER and goes to the microprocessor AI-7 input.
The user determines the configuration of the control signals, such as TMER, SLU BREAK request, or
BHALT, that can trigger this interrupt. The E7 flip-flop is clocked by the input to M10; this asserts the
E32 flip-flop input. The assertion of CAS clocks the E32 flip-flop and enables the -CTMER output.
The CTMER output is set high and goes to the NAND gate E16. The assertion of PI during a micro­
processor read or fetch transaction latches - CTMER into the microprocessor and simultaneously
switches the E16 NAND gate output low. This sets the output of the E28 AND gate low to reset the E7
flip-flop for the next HALT interrupt. The E32 flip-flop is cleared by the next CAS strobe. The micro­
processor AI-7 input is pseudo edge-sensitive; it must be negated for one PI time before another trap to
the restart address can be started.

As explained in Chapter 2, connecting M9 to M13 prevents -CTMER assertion during LSI-ll bus
interrupt acknowledge transactions. This will prevent the restart trap resulting from this time-out.

8-19

-SELl
SELO
TDAL12

COUT

RAS

-BCLR
E36

.. ---- - ------- ------ -­- ... - - - - -- - - - - - - - - - -_ .. _-- - -- --- ------- --- - - - - - - - - - - - - - - -- -
-.- - - ---.. - - - ------- .. - - - - - .. - - - - - ... - - -
- -.. _------ - -----_._ _- -------- -------- ----- ------_. --_ ..
---- - - ------- _.- -.- --­.. .. - - - - _ - - - -- - -- - _ ..
------------_ _---------- - '---

---------------------- - ----

--- ------- ------ ------;..-------
A. SIGNALS DURING LOCAL INTERRUPT

--- -------------- - -------------~--....;

- ------ -----------

.... _--_._. -----_ _ _-_ ... __ _---_ _._ --.-_._--- .. . _. -_ - --_ -_.- __ - __ --- - -
._._----_. __ .. _-._ .. _ .. __ . __ ._-------- ... -_. ..- -... _ .. -

B. SIGNALS DURING LSI-ll BUS INTERRUPT

Figure 8-13 IAKDIN

8-20

-IAKDIN

-BIAKO

TlAKO

CAS
PI

SELl
RAS

-IAKDIN
COUT

TIAKO
READY

XHB

RHLB
-IAK
RLB

PBRQST

IRQ4
A15
-f'BAK H

CAS
PI

SEL1
RAS

-IAKDIN

COUT
TIAKO
READY

E46PIN 5
E31 PIN 10

E34PIN 5
E46PIN 16

E15 PIN 12
E8 PIN 11

E8 PIN 9
E57PIN 26

E52PIN 5

E51 PIN 4
E34 PIN 6
E43 PIN 4

E27 PIN 14

E27 PIN 7
E34 PIN 8
E40PIN4

E46 PIN 5
E31 PIN 10

E34 PIN 5
E46 PIN 16

E15 PIN 12

E8 PIN 11
E8 PIN 9
E57 PIN 26

XHB E52 PIN 5

RHLB E51 PIN 4

-IAK
RLB

E34 PIN 6
E43 PIN 4

PBRQST E27 PIN 14
IRQ4 E27PIN7
A15 E34PIN8
-PBAK H E40 PIN 4

MR-7S07

-IAK M9 M13
~~----------------~O

TMER M14 M10
~~----------------~C

CAS

-BCLR

TREAD
PI

+3V

E7 E32

--_- TDIN
-_______ TDOUT

--_-_- TRGTM

-RRPL Y

=~~==========~::.-=~~~==~==~=TMER RAS
:....-_______ :--------- M8

-CTMER
AI-7

E14 PIN 3
E6 PIN 8

E14 PIN 8
E9PIN12

E9 PIN 11
E29 PIN 9
E29 PIN 13
E7 PIN 12

----------------- M6(TMER) E7 PIN 11
HLTRQ E7 PIN 9

--- HLTRQ
------------------------------- CAS

__ CTMER
~ __________________ ~-_--_--_- TREAD

PI
::~::::::::::::::::~:=~:=~~:=~===== -IAK

A_ SIGNALS DURING LSI-11 BUS TIME-OUT
(INTERRUPT ACKNOWLEDGE WITH M13 AND M9 JUMPER ED)

TSYNC
-_-.-_-.--. __ -_-_-_-_-_._-_-_-_-_-_-_-.-_-_-_-_-.-_-.-••••• -- READY

_ TRGTM

__ -RRPLY
-___________________________ --___ TMER

---, • RAS
-------------___________________ M8

E32 PIN 5
E32 PIN 9

E32 PIN 7
E15 PIN 6
E16 PIN 4
E34 PIN 6

E4 PIN 5
E14 PIN 11
E14 PIN 8
E9 PIN 12

E9 PIN 11
E29 PIN 9
E29 PIN 13
E7 PIN 12

M6(TMER) E7 PIN 11
HLTRQ E7 PIN9

--------------------------------____ HLTRQ
------------------------_--_ CAS

=:::::::;;;;;;;;;;;;;;;;;;;;;;;;;;~;:~ TREAD
- PI
__ -IAK

B_ SIGNALS DURING NONEXISTENT LSI-11 BUS ADDRESS
(WITH M13 AND M9 JUMPERED)

Figure 8-14 HALT Interrupt

8-21

E32 PIN 5
E32 PIN 9

E32 PIN 7
E15 PIN 6
E16 PIN 4
E34 PIN 6

8.4.5 Power Fail (-PFAIL)
The -PFAIL output is connected to the AI-6 input of the microprocessor and is recognized as the
power fail interrupt which is nonmaskable. This is the second highest priority interrupt and it does not
initiate an IAK transaction. When acknowledged, the microprocessor traps through octal addresses 24
and 26 to access the PC and PSW for the user's power fail routine. This routine should include a RE­
SET instruction, any other instructions needed to initialize the bus and the module, an MTPS instruc­
tion that willioad 340 into the PSW, and a WAIT instruction to inhibit the assertion of any LSI-II bus
control signal when battery backup is being used.

As an option to the MTPS instruction, 340 may be stored at location 26. Then, when the microprocessor
vectors through 24, 340 will automatically be loaded into the PSW.

8.4.6 Local

NOTE
BDCOK can be used as a microprocessor reset sig­
nal, unrelated to power failure. To guarantee correct
restart, the BnCOK pulse must be at least 100 fJ,S

wide. BPOK should remain inactive during this reset
operation.

The on-board local interrupts are listed in Table 8-2 and use a coded input on the AI-1 through AI-5
inputs to the microprocessor. Some of these interrupt functions are determined by the user when con­
figuring the module. There are eight local interrupts which are all maskable. The multiple interrupts
are arbitrated, and the interrupt with the highest priority is serviced by the microprocessor. All local
interrupts initiate an IAK transaction, and their vector addresses are internal to the microprocessor ..
During IAK, the serviced interrupt is driven on TDAL lines 11-8 to address the interrupt acknowledge
PROM. The outputs of the PROM reset the interrupts. TDAL bits 7-0 are ignored. The micro­
processor pushes the present PSW and PC onto the stack and receives a new PC and PSW from the
vector address location and the next location.

8.4.7 External
A level 4 LSI-II bus interrupt also uses a coded input on the AI-1 through AI-4 inputs to the micro­
processor. The interrupt is maskable. For the bus interrupt, the AI-5 input to the microprocessor is
taken low to indicate that the vector address must be read from LSI-ll bus bits 7-2. :rhe micro­
processor does an IAK transaction and places the BDIN and BIAKO signals on the bus to the request­
ing peripheral device. This device responds with - BRPL Y, and the vector address is read from the
LSI-II bus. The microprocessor pushes the current PC and PSW onto the stack and reads a new PSW
and PC from the vector address location and the next location.

If the interrupting peripheral device fails to assert the BRPLY bus signal within 10 fJ,S after BDIN is
asserted, the module time-out signal TMER is enabled. The microprocessor completes the IAK transac­
tion and receives a vector address of zero because there is nothing driving the bus. The new PSW and
PC are then read from locations 0 and 2. Optionally, the user can connect the time-out signal TMER to
the HALT interrupt, and the interrupt can then be processed. The HALT interrupt pushes the current
PSW and PC, which were read from locations 0 and 2, onto the stack and then loads the PC with the
restart address and the PSW with 340. If the HALT is ignored for the vector time-out, only a vector
through locations 0 and 2 will occur.

8-22

8.4.8 DMA Interrupt
The DMA request is connected to the AI-O input to the microprocessor. The DMA request is received
by the microprocessor during any read, write, fetch, or ASPI transaction. The request is not acknowl­
edged by an IAK transaction, but is acknowledged by the microprocessor asserting the SELO and SELl
outputs to initiate a DMA transaction. (See Paragraph 8.15 for a discussion of DMA transactions.)

8.5 DC004 PROTOCOL
The DC004 protocol logic chip (see Figure 8-1, sheet 1) interfaces the LSI-ll read/write signals with
the module read/write signals. The -CSQB input goes high and is strobed by RSYNC to enable the
logic. The BDIN L input goes low to request read data and switches the - READ output low. The.
BDOUT L input goes low to strobe write data and switches the - WHB and - WLB outputs low if the
BWTBT L input is high. When the BWTBT L input is low, the BDALO L input will select either the
- WHB or the - WLB. A low on the BDALO L input switches the - WLB output low. The BRPL Y L
output is controlled by the -CSQB input. When -CSQB input is high, this indicates that the LSI-II
bus was not selected. The BRPL Y L output is enabled and is switched low, after an RC delay, when
BSYNC L and either the BDIN L or BDOUT L outputs are switched low. If the -CSQB input is low,
the LSI-ll bus is selected and the BRPL Y L output is disabled. The BDALO, 1, and 2 inputs control
the - SEL6 output. The output goes low when the BDALI Land BDAL2 L inputs are low and the
BDALO L is high.

8.6 ADDRESS LATCH
The address latching logic (see Figure 8-1, sheet 1) has sixteen transparent latches designated E48 and
E56. The latches are always enabled by grounding the output control input. The TDAL bus bits 1-15
and the I/O page select signal RBS7 are monitored. The status of inputs is latched to the address bus as
bits ADI through AD15 by the RSYNC input going high. The address bus and the latched LBS7 signal
go to the memory address decode logic. The address bus is common to the module memories and the
I/O circuits and remains stable while RSYNC is asserted.

8.7 MEMORY ADDRESS DECODE
The memory decode logic (see Figure 8-1, sheet 1) has a field programmable logic array (FPLA) that
decodes the applied address bits and the latched LBS7 signal. The FPLA selects a predetermined out­
put according to the selected memory map. The module address range includes the on-board memory,
the I/O interface registers, and LSI-II bus addresses. Four different memory maps, described in Fig­
ure 8-15, are available to the user. The M25 and M2I wirewrap pins, described in Chapter 2, allow the
user to select one of these maps. The FPLA is enabled if the DCLO input is low. An address location in
the RAM memory enables the - CSRAM output, and an address location of either socket set A or B of
PROM enables either the -CSKTA or -CSKTB outputs. A register address for either SLUI or
SLU2 will enable the -CSDLO or -CSDLI outputs. The -CSPL output is enabled when a register
of the parallel I/O logic is addressed. The -CSLIP output is low for all the above address conditions.
The -CSLIP output goes high only when the address is accessed on the LSI-ll bus and the -CSQB
output is enabled low. The -CSLIP output allows the processor to cycle slip during the LSI-ll bus
read/write and IAK transactions.

8.8 RAM MEMORY
The static RAM memory, shown in Figure 8-16, is a 2K X 16-bit memory that has a 2K X 8-bit high
byte chip and a 2K X 8-bit low byte chip. The memory is selected by the -CS RAM input going low
to the CS pin. The memory is addressed by address bits AD I-AD 11, and 16-bit data is read from or
written to via TDAL bits 0-15. The memory is read by the -READ input going low to produce a low
input to the OE pin of the memories. The - WLB selects the low byte, and the - WHB selects the high
byte. The - WHB and - WLB inputs to the WE pin enable the write function, and - READ input
goes to the OE pin of the memories to enable data output during read.

8-23

64KB

56KB

4BKB ,-

40KB

32KB I-

24KB

16KB

BKB ,-

OKB

MAPO MAP 1 MAP2

(NOTE 3)
64KB

(NOTE 3)

64KB

(NOTE 3)
2KB (NOTE 1)

4KB LOCAL RAM 4KB LOCAL RAM 4KB LOCAL RAM
(NOTE 2) (NOTE 2) (NOTE 2)

56KB 56KB

4BKB 4BKB

LSI-11 BUS LSI-11 BUS LSI-11 BUS

40KB 40KB

32KB 32KB

24KB 24KB

16KB . 16KB

BKB SOCKET A

8KB 8KB

4KB SOCKET A
8KB SOCKET B

4KB SOCKET B
OKB OKB

NOTES:
1. SOCKET SET A IS MAPPED OVER SOCKET SET B AND IS

THEREFORE LIMITED TO USING EITHER SOCKET A OR
SOCKET B, BUT NOT BOTH TOGETHER.

2. ADDRESSES 160000 THROUGH 160007 ARE ASSUMED TO
RESIDE ON THE LSI-11 BUS.

3. THIS SECTION CONTAINS THE LOCAL I/O ADDRESSES FOR
THE SLUs AND PPI. ALL UNASSIGNED ADDRESSES ARE
ASSUMED TO RESIDE ON THE LSI-11 BUS.

Figure 8-15 Memory Maps

8-24

MAP3

64KB

(NOTE 3)

4KB LOCAL RAM
(NOTE 2)

56KB

4BKB

LSI-11 BUS

40KB

32KB

24KB 16KB SOCKET A

16KB

8KB 16KB SOCKET B

OKB

MR·6643

-READ DE

-WHB - STATIC RAM
WE HIGH BYTE

-CS RAM CS
2K X 8

-') XE53

(TDAL08-15 AD1-ADll
....

TDALOO-'-[)
....

~ ~TDALOO-07
-CS RAM CS STATIC RAM

LOW BYTE
-WLB - 2K X 8

WE

XE38
-READ

OE

MA-751B

Figure 8-16 RAM Memory

8.9 ROM/RAM MEMORY SOCKETS
The ROM/RAM memory, shown in Figure 8-17, provides the user with four 28-pin sockets to accept
either 24-pin or 28-pin industry standard +5 V chips. The sockets can hold up to 32Kb ofUV PROMs,
PROMs, or ROMs and up to 8Kb of static RAM. The socket sets are defined as A and B, and each has
a high byte socket and a low byte socket. The sockets use the -CSKTA and -CSKTB outputs from
the memory address decode (see Figure 8-15 for the memory maps). The -READ, - WHB, and
- WLB signals from the DC004 protocol are used to provide a high byte chip enable (HBCE) and a
low byte chip enable (LBCE). There are thirty wirewrap jumper pins available for the memory con­
figuration. See Chapter 2 for detailed information.

NOTE
When a memory chip is placed into a socket wired
for a larger capacity part, for example a lK X 8
chip in a 2K X 8 socket, the addresses above the lK
boundary will wrap around into the start of the
memory. This should be noted when selecting the
memory map configuration.

8-25

-READ M64
0 TDAL 00-15

-WHB M56 -CSKTA -CSKTB
0 M41 M34

-WLB M57 0 0
0

READ M31 M43 M42
0 2

M44 M36
2 2 0 0 2

AD12 AD13 M62

22 22 22 22
LOW BYTE HIGH BYTE LOW BYTE HIGH BYTE
28-PIN M38 28-PIN 28-PIN M32 28-PIN

20 20 M55 M46 20 20
SOCKET A

M7 SOCKET A ;J SOCKET B SOCKET B
XE44 XE54 GND XE45

27 XE55 26 26 27 M48 M33
+5 V NCR

Z1
23 M35 M63 23

M45
0 M47

AD11 21

MR-7510

Figure 8-17 ROM/RAM Memory Sockets

8.10 SERIAL LINE INTERFACE UNITS
There are two asynchronous serial line units, SLUI and SLU2, that provide serial I/O interface
through 11 and 12 as shown in Figure 8-18. Configurations are discussed in Chapter 2.

The SLUs transmit or receive 8-bit, byte-oriented data, with no parity, one start bit, and one stop bit.
SLUI provides the XDLI and RDLI interrupts for transmit and receive and the BREAK output that is
wired to pin M 17. The user can jumper the BREAK output to the HALT interrupt (pin M20) and use
SLUI as a system console. SLU2 provides the XDL2 and RDL2 interrupts for transmit and receive
and three real-time clock interrupts at 50 Hz, 60 Hz, and 800 Hz. These interrupts are wired to pins
M27, M19, and M28 for use with the TEVNT interrupt (pin M23).

When the serial line units are addressed, the -CSDLO input selects SLUI and the -CSDLI input
selects SLU2 by enabling the chip select (CS) inputs. Address bits AD2 and ADI are used to select
individual registers within the SLUs. These registers are listed in Table 8-3 with their address and the
logic states for AD2 and ADI to access them. The -READ input will read the 16-bit register selected
by -CSDLO or -CSDLl, AD2, and ADl by placing the contents onto the TDAL bus if the - WLB
input is not asserted low. When asserted low, the - WLB input will write the low byte of the TDAL bus
into the register selected by -CSDLO or -CSDLl, AD2, and ADl. However, only the register bits
defined as read/write will be written into. The DLCLK input is a crystal-controlled clock reference
used by the SLU to generate baud rates and real-time clocks. The BCLR input is asserted during a
RESET instruction; the RCVIE bit of the RCSR register and the XMITIE, MAINT, and XMIT BRK
bits of the XCSR register are reset. When the DCLO input is asserted during power-up, it disables all
SLU outputs and resets all internal logic and registers. The baud rate will be set at 300 baud after the
SLU is initialized by DCLO.

The RS232 and RS423 signals for the interface connector are provided by 9636 (E42) and 9637 (E30)
dual line drivers and dual line receivers. The slew rate for both channels is controlled by resistor R6.
The factory configuration uses a 22 kQ resistor to provide a 2 ILS slew rate for operating at a 38.4K baud
rate. See Chapter 2 for the configuration requirements at other baud rates.

8-26

J1

~7 M20 .--
-CSDLO BREAK OUT

D--THALTH +12F- 10
BRCLK 1

SLU 1
DLART

XE58 E42·- 3

DC LO RCVIRO ~RDLI

BCLR XMITIRO ~XDLI
AD2

E39f

7

AD1 8
-WLB

TR8 -READ

~ DLCLK -12V.....- 2

~ 4
~.

~5

~ 9

-= "---
.....

TDALOO-1V

~ ~ -
~ ~ +12F- 10

BRCLK
1

SLU 2
DLART

XE59 ~
E42 ~ 3

RCVIRO f-"+RDL2
XMITIRO f--+XDL2 ""'"

E3~r
7

M27 8 -CSDL1

~9
....

50HZ ~R7
M23

60HZ ~8
D--TEVNT H -12V r-- 2

~4
800HZ I--- 5

I--- 9
-=

L-
DLCLK 04

E49

03
05
4.3 V

+5 VDC -=
Zl

E49

MR-7525

Figure 8-18 Serial Line Interface Units

8-27

Table 8-3 Serial Line Unit Registers

Register Description Address AD2 ADt

SLUI
RCSR Receiver control/status 177560 0 0
RBR Receiver buffer 177562 0 1
TCSR Transmitter control/status 177564 1 0
TBR Transmitter buffer 177566 1 1

SLU2
RCSR Receiver control/status 176540 0 0
RBR Receiver buffer 176542 0 1
TCSR Transmitter control/status 176544 1 0
TBR Transmitter buffer 176546 1 1

8.11 PARALLEL I/O INTERFACE
The programmable parallel I/O provides a 30-pin connector for transferring parallel data into or out of
the SBC-ll/21 module. The parallel I/O uses an 8255A-5 programmable interface chip, two 8-bit
transceiver chips, and an 8-bit buffer chip as illustrated in Figure 8-19. The 8255A-5 chip has three
input/output ports defined as port A, port B, and port C. Port A and port B outputs are connected to 8-
bit bidirectional transceivers that are controlled by wirewrap pins M49 and M52. When a logical one is
applied to these pins, the data lines function as inputs to the module. When a logical zero is applied to
these pins, the data lines function as outputs from the module. The user can configure these as inputs or
outputs by using wirewrap pins M51 and M50 or as programmable inputs/outputs by programming the
PC4 and PC6 lines (M54, M58) of port C as described in the configuration description in Chapter 2.
The port C outputs are connected to directional buffers and are used for interrupts and the handshake
control for ports A and B. PCO and PC3 are wired as outputs, PC3 enables the parallel interrupt request
for port A, and PCO enables the parallel interrupt request for port B. PC4 and PC6 can be used as
acknowledge or strobe inputs or can be configured to dynamically control the direction of ports A and B
from either the 8255A-5 interface or the external peripheral device. PC1, PC5, and PC7 are wired as
outputs, and PC7 is wired to an LED that can be program controlled. PC2 is wired as an input and has
a current limiting resistor for protection when PC2 might be programmed as an output from the 8255A-
5 interface. See Chapter 2 for detailed configuration requirements and Chapter 6 for programming
information.

The 8255A-5 programmable peripheral interface (PPI) is enabled by the -CSPL input from the mem­
ory address decode chip when the 176200-176207 addresses are selected. The ADI and AD2 address
lines are decoded to select one of the four registers listed in Table 8-4. The port A, port B, and port C
registers are read/write registers, and the control word register is a write only register. The addressed
register is written into with the data on the TDAL 7-0 bus when the - WLB input is asserted. The
content of the addressed register is placed on the TDAL 7-0 bus when the - READ input is asserted.
The -SEL6 L input to NAND gate E35 inhibits the read strobe from the control word register, and
therefore, any read of the control word register produces invalid data to the microprocessor. Only the
low byte of the TDAL bus is used with the PPI, and any data on the high byte is always considered
invalid. The - BCLR input is used to reset the PPI when it is asserted, and all twenty-four 8255A-5
I/O lines are then defined as inputs. The buffer outputs to the connector will be driven high.

8-28

00
I

tv
\0

-READ

,..-PC3

PCO

PCl

PC2
ADl Al

PC3

AD2 AO M58
PC4 --0

-CSPL --Cl CS
PC5

-WLB -C WR M54
PC6 --0

r---------,
,PCO 1 I

~---4~~----~ I I
~--~--------~--~ 1 1
~----~~----~l~----< ~------~----------------~ 4

I I
~L-----------------~10

I :
~----~----------------~ 5 I ~

~------------~

M53 TI I
:: ~--+_----------------~7

Rl0

9

3

6

-BCLR RESET ~---------~il !
READ

E21 '"\...,..

..:_~SE=.:L:...;6~_E_35.....,./ RD

r TDAL 00-07 ")
r

PC7

8255A-5
PROGRAMMABLE
PERIPHERAL
INTERFACE

XE60
PBO
PBl
PB2
PB3
PB4
PB5
PB6
PB7

+3V OM50 M49

GNDOM51

PAO
PAl
PA2
PA3
PA4
PA5
PA6
PA7

M52 PJl E49
I r-. I

Rll

1 E61 I I D~
L.@-+5V

8

.----- 1
I-- 2
I-- 15
I-- 16

I BUFFERS I L _________ -oJ

BO
B3
B5 BUS
B7 TRANSCEIVERS
B6 E50 B4
B2
Bl

DIR

T

AO
A3
A5
A7
A6
A4
A2
Al

-==
~----------------~12

~----------------~14

~----------------~18
~----------------~20

~----------------~19

~----------------~17

~----------------~13

~----------------~11

r-29
~30

B6 A6~----------------~27
B4 A4 25
B2 BUS A2 23
BO TRANSCEIVERS AO 21
Bl
B3
B5
B7

DIR

I

E62

-=L.C22

t

Al n
A3 24
A5 26
A7 28

i....-

MR·7524

Figure 8-19 Parallel I/O Interface

Table 8-4 PPI Addressable Registers

Register Address Status

PortA 176200 Read/write
Port B 176202 Read/write
PortC 176204 Read/write
Control word 176206 Write only

8.12 POWER-UP
The power-up circuits (Figure 8-20) sense the application of + 5 V NCR power source to the module
and initiate a power-up sequence. When the + 5 V NCR input is first applied, the input at the inverter
E21 is low and causes the clear input of the PUP flip-flop E29 to be low, therefore keeping its output
low. When the input to the NAND gate E35 is low, the - PUP output is high and the microprocessor is
held reset and asserts the - BCLR output. The + 5 V NCR input charges C8 through R4 until the
threshold level of inverter E21 is reached. This occurs at approximately 2.6 Vdc and 70 ms after + 5 V
NCR was applied. This causes the reset input to the PUP flip-flop to go high and the set input to go
low, setting the flip-flop. The -PUP output of the NAND gate E35 goes low. This initiates the power­
up sequence of the processor.

The power-up delay circuit can be bypassed by inserting a jumper between M4 and M6. This allows the
BDCOK Hand BPOKH bus signals to control the PUP output. The +5 V NCR input goes directly to
the inverter E21 driving input to the NAND gate E37 low. The E37 output is then controlled by
BDCOK. The BDCOK H signal is low until the power supply stabilizes, causing the reset input to the
PUP flip-flop to be low. The BPOK H signal is also low and causes the preset input to the flip-flop to be
high. The low input to NAND gate E35 drives the - PUP output high. The microprocessor then asserts
the -BCLR output resetting the PFAIL flip-flop. After a minimum of 3 ms, the BDCOK bus input
goes high and allows the PUP flip-flop E29 reset to go high. After a minimum of 70 ms, the BPOK H
bus input goes high causing the PUP preset input to go low. This allows the output to go high, and when
both inputs to NAND gate E35 are high, the -PUP output is low. This initiates the power-up sequence
of the microprocessor.

The BPOK H bus input also goes to the PF AIL flip-flop E32. During the power-up sequence, - BCLR
resets the PF AIL flip-flop. The flip-flop remains reset until the BPOK input goes low indicating a pow­
er fail. The next CAS input clocks the PF AIL flip-flop and sets it. This causes the power fail interrupt,
and the microprocessor traps to location 24. The flip-flop must be reset for at least one microprocessor
read before another assertion will be recognized by the microprocessor.

8.13 CLOCK
The module uses a 19.6608 MHz crystal oscillator as the basic time base reference. The oscillator out­
put goes to the clock control logic (see Figure 8-21) and to the E23 binary counters. The counters are
always enabled. The 19.6608 MHz output is divided by 32, and the DLCLK output, at 614.4 kHz, goes
to the serial line units and to the charge pump. The 19.6608 MHz output is also divided by 4, and the
4.91 MHz output goes to the pulse sync circuit E22. When the TCLKSP input is low, the circuits are
enabled and the output goes to the next pulse sync circuit. When the TCLKSP input is high, the cir­
cuits are inhibited and there is no output. The second pulse sync circuit is controlled by the PUP input.
When the PUP input is low, TCLK to the XTLI input is enabled. When the PUP input is high, the
XTLI input is inhibited.

8-30

BPOK H

E32
CAS.~ __ ~ ______ ~

-B ClR

r-­
I
I
I
I
I

R4

- - -;'A-;;;U~R7t;;T'
I

~I

L __ _ __ ..J
BDCOK H

E29

_____________________________________ ---- XlB
E36 PIN 6

E21 PIN 8

BDCOK H E37PIN 15

BPOK H E51 PIN 13

BINIT l E18PIN 4

-8ClR E25 PIN 18

-PUP E35PIN 8

- -TClK E22 PIN 17

SIGNALS DURING POWER"UP
MR-7504

Figure 8-20 Power~up

SClK

DIVIDE DIVIDE DlClK
BY 16 t-- BY 2

E8 E8

DIVIDE

119.66 MHZ I "W1,..
8Y 4

E15 f--- E15
-TClK

t--

OSC E2 I E8

TCLKSP

-PUP

MR-6649

Figure 8-21 Clock

8-31

-P FAIL

-PUP

DC LO

8.14 CLOCK CONTROL
The clock control logic (Figure 8-22) stops the XTL1 input to the microprocessor and forces the micro­
processor to stop or wait until the XTL1 input is enabled again. The TCLKSP output is normally low to
enable XTL1 and is controlled by the TMRP input being high. TMRP forces a low for both inputs to
the OR gate E2, and the low output is clocked through the TCLKSP flip-flop by the 19.6 MHz input.
When TMRP goes low, this removes the low inputs to the AND gate E13 and the IAK flip-flop E3. The
TSYNC input is high for read/write and fetch transactions, and when the -CAS input goes high, the
AND gate E13 output also goes high. The output of AND gate E13 is clocked through the TCLKSP
flip-flop, and the output goes high to stop the 4.91 MHz clock output of E22. The TSYNC input is low
for DMA and IAK transactions so that input to the AND gate E13 holds the output low. However, the
IAK flip-flop E3 is set when the - IAK clock input goes high at the end of an external interrupt trans­
action and the E2 output goes high. The E2 output is clocked through the TCLKSP flip-flop, and the
output goes high to stop the 4.91 MHz clock output of E22. The microprocessor XTLI input will stay
stopped until the TMRP input goes high again because either BRPL Y or TMER have been negated.
This forces the IAK flip-flop E3 output to go low. This negates the TCLKSP output and enables the
XTLl input to the microprocessor.

8.15 DMA
The DMA logic (Figure 8-23) controls the bus and microprocessor for DMA transactions. The BDMR
L input goes low to start a DMA request. The output of the inverter goes high and is clocked through
flip-flop E25 by COUTo The low output goes to the El5 NOR gate, and the high output goes to flip­
flop E25. The high output is clocked through by COUT and enables the two NAND gates E24 and El.
The high output is also clocked through flip-flop E32 by the CAS input. The high output enables the
NAND gate E35, and the -CDMRQ output (AI-O input) is switched low. The -CDMRQ output is
the DMA interrupt to the microprocessor and it starts a DMA transaction. The microprocessor ac­
knowledges the request by setting SELl and SELO high to NAND gate E24. The preset of flip-flop E8
goes low to set the DMG output high and the - DMG output low. The DMG high input to NAND gate
E35 switches the output low and goes to NOR gate E15. The BSACK L input is normally high and,
when inverted by E52, is a low input to the NOR gate E15. All three inputs to the NOR gate E15 are
now low causing the output to switch high. Two high inputs to the NAND gate E1 switch BDMGO low
on the bus to the originator of the DMA request. The requesting device then sets the bus signal BSACK
L low and the BDMR L input high. BSACK L is inverted by E52 and removes the low from the NOR
gate E15 and the high input to the NAND gate El causing the BDMGO output to go high. It also
provides a high input to NAND gate E24 causing the output to switch low. This low goes to the preset
input of the flip-flop E25 and clamps the output high; this holds the microprocessor in the DMA mode.
The requesting device maintains the BSACK L input low for the duration of the DMA transfer and
then sets it high. This removes the low from the preset input of flip-flop E25 and enables the flip-flop.
Previously, the BDMR L input went high and was inverted as a low to flip-flop E25. This low was
clocked through by COUT and provided a low input to the enabled flip-flop E25. The low is now
clocked through causing the -CDMRQ output to go high. This removes the request from the micro­
processor. The microprocessor completes the DMA interrupt transaction and negates the SELl and
SELO outputs. The preset input of flip-flop E8 is no longer low, and the low data input is clocked
through when RAS goes high. The DMG output goes low, and the -DMG output goes high to com­
plete the DMA transaction.

8-32

TSYNC
-CAS E13

+3 V

T ClK SP

E5

-TClKSP

E3

-IAK

+3V

-TMRP

E5

-DRRPlY

S ClK

-BClR

.-••• -_-. __ - _-. -.-_ •• -_-.-_-•• : _._.: :_-_-_ -.-.-.-.-_-_-. -.-_-.-_-.-_ -_-: :.- SClK E23 PIN 13

E23PIN 10

____ TClKSP E22 PIN 13

SIGNALS FOR CLOCK CONTROL

Figure 8-22 Clock Control

8-33

-TClK E22 PIN 7

TSYNC E4 PIN 5

-CAS E46PIN 15

DRRPlY E13 PIN 3

E13 PIN 12

TSYNC E4 PIN 5

DRRPl Y E5 PIN 5

-IAK E3 PIN 11

-CAS E13 PIN 5

TClKSP E22 PIN 13

-TClK

E22 PIN 11

E22 PIN 7

MR-7508

B DMR l

B SACK l E52>--+-----+-----il--Jyr--...,

COUT

CAS

-BClR

SEll

SElD

-RAS

~---------------------------------RDMR
-------------------------------------" COUT

DMRQ

CAS

:::::~====::::::::::::::::::::::~::::::CDMRQ SElD
________ --------------------_______ SEll

E47 PIN 3
E25PIN 3
E25 PIN 5
E25 PIN 9

E32PIN 9
E32PIN2
E46PIN 13
E46PIN 6

DMG EB PIN 5
______ ---------" ______ RSACK E15 PIN 9
_____________________ TDMGO E15PIN 8
___ - ____ -_-_-_-_-_---:-_-_-___ -_-RAS E8 PIN 3

-- -- --
========~~~~~~~~~====:::XHB - - ------

SIGNALS FOR DMA LOGIC

Figure 8-23 DMA

8-34

E6 PIN 6
E12PIN 12

E16PIN8
E16PIN 12

BDMGO

-CDMRQ

DMG

-DMG

MR-7503

8.16 TSYNC
The TSYNC output (Figure 8-24) is normally high for the microprocessor controlled fetch/read and
write transactions and low for IAK and DMA transactions. These conditions follow the -SELl input
which is high and low for the same transactions. The exclusive OR gate E31 is wired as a noninverting
buffer, and when RAS goes high, the -SELl input of the TSYNC flip-flop E4 is clocked through as
the output. When the -CSYNC clear input goes low, it forces the output of the TSYNC flip-flop E4
to go low. The CSYNC flip-flop E4 normally has the clear input pulled low by TCLKSP and, the out­
put to the AND gate E6 is high. When the TCLKSP input goes high, the input of the CSYNC flip-flop
is enabled. At this time, the - DRRPL Y clock input is low and goes high to clock the flip-flop before
the TCLKSP input gets reset. If a DMA transaction is in progress, the - DMG input is high and the
CSYNC flip-flop output stays low when clocked by - DRRPL Y going high. For any transaction other
than the DMA, the -DMG input is low and the CSYNC flip-flop output goes high when clocked by
- DRRPL Y going high. This allows the CSYNC output to go high and clear the TSYNC flip-flop E4,
the write byte flip-flop E3, and the disable flip-flop E7 as shown in Figure 8-25.

+3 V

-SELl TSYNC

RAS E4

-T SYNC

+3 V

-DMG

E4
-DRRPLY

-C SYNC

TCLKSP

-BCLR

MR-7511

Figure 8-24 TSYNC

8.17 READ/WRITE
The read/write logic (Figure 8-25) controls the read, write, and fetch transactions for the micro­
processor and supports the IAK and DMA transactions. The microprocessor controls the R/ - WLB
and R/ - WHB inputs to select either BDIN, BDOUT, or BWTBT bus signals. To select the BDIN
output, the microprocessor sets both R/ - WLB and R/ - WHB inputs high to NAND gate E24. The
output goes low to enable the NOR gate El5 and disables the AND gates El2 and E6. The - TSYNC
input to El5 is low for read/write transactions. When the -CAS input goes low, the TREAD output
goes high. The TDIN output of OR gate E14 goes high, and the BDIN output of NAND gate El5 goes
low. The - DMG input to the NAND gate is always high except for DMA transactions. During inter­
rupt transactions, the IAKDIN input to El4 is enabled high and causes TDIN to go high and BDIN to
go low.

The microprocessor determines any write condition by setting either or both the R/ - WLB or
R/ - WHB inputs low. The output of NAND gate E24 goes high and enables the AND gates E6 and
E12. The output of flip-flop E7 is high, and the -CAS input to AND gate El2 is high. The output of
AND gate El2 goes high, and the output of OR gate E2 goes high. The DMA input to NAND gate EI
is high and allows the BWTBT output to go low. At this time, the write destination address is written

8-35

-DMG

[;+3 V

-SEL1
f--- E7

-RAS

JE26
.,..

E12 }---).:

-
",-BWTBT -PI '- r- E1 - .r ~ ;-

-CAS ,.......,
j;+3V -

) E31 -
r----J E3

0

-CSYNC 9 TREAD

R/WLB -
E24 "'-

~ E1~ - -

'" J E1)--r-

E1
BDIN

R/WHB F r-

- TDIN
-T SYNC -
IAKDIN

TDOUT

E6~ BDOUT

CAS

TSYNC
PI

E13

-RAS E46 PIN 4 - - - - - - -------- -------- --
TSYNC E4 PIN 5 ------ ----------- - - - -
-CAS E46 PIN 15 - --- ---- -----~ TDIN E14 PIN 3

PI E31 PIN 10

TDOUT E6 PIN 8
R/-WLB E31 PIN 2
R/-WHB E24 PIN 4

WBYTE E3 PIN 2
WRITE E24 PIN 6
WT E12 PIN 6

-CSQB E39 PIN 16

-CSLlP E6 PIN 1
-NO BYTE E7 PIN 6

E3 PIN 5
--- ---------~ . TWTBT E2 PIN 6,

SIGNAL FOR READ/WRITE LOGIC

MR-7505

Figure 8-25 Read/Write

8-36

onto the bus. The logic now determines if the data being written is a word or a byte. The exclusive OR
gate E31 monitors the R/ - WLB and R/ - WHB inputs, and the output goes high when the inputs are
different. A high output indicates that the data is a byte; a low output indicates that the data is a word.
The output goes to flip-flop E3.

The microprocessor asserts CAS. The CAS input to E3 and E9 goes high, and -CAS input to EI2goes
low. The -CAS input to AND gate El2 switches the output low to remove BWTBT, but the CAS
input clocks flip-flop E3 and enables the WBYTE signal to E2. The output of the flip-flop E3 is high for
byte transactions and low for word transactions. The BWTBT L signal will either stay asserted low for a
byte transaction or be negated high for a word transaction. The TSYNC and CAS inputs to AND gate
El3 are set high, and when the PI input goes high, the gate output goes high. The AND gate E6 is
enabled, and the output of E13 switches the TDOUT output high. The TDOUT is inverted. The
BDOUT output is enabled by going low and it writes the data word.

At the same time, the -RAS and -PI inputs to NOR gate E26 are both low, switching the output
high. The high clocks flip-flop E7, and the output goes low. This inhibits the AND gate El2 when the
- CAS input goes high again. The flip-flops are reset by CSYNC at the end of the transaction.

8.18 REPLY TIME-OUT
The reply time-out logic (Figure 8-26) monitors the bus BRPLY L input to indicate that an LSI-ll bus
device responds to an address. The TMER flip-flop E29 output is normally set low by the RAS input to
clear the flip-flop. The BRPL Y L input is high and inverted so the RRPL Y output is low. The
- TMRP NOR gate inputs are both low, and the - TMRP output is high. The bus transaction is
started by either TDIN or TDOUT inputs going high. This enables the 10 /.LS time-out (50 cycle slips)
monostable multivibrator to start. The microprocessor starts to cycle slip while waiting for the BRPL Y
L input to go low, indicating the bus transaction can complete. When BRPLY L switches low, the
RRPL Y output goes high and the - TMRP output goes low. The TMER output stays low. If the
BRPL Y L does not go low and the 50 /.LS time-out circuit allows the 50 cycle slips, the TMER flip-flop
is clocked and the TMER output goes high. TMER also forces the - TMRP output to go low. The
assertion of the TMER output goes to the halt logic, and the microprocessor action is dependent upon
the configuration of the module. The - TMRP output goes to the clock control and the ready logic. The
RRPLY output goes to the bus control logic and enables bus data to be received during LSI-ll bus
device reads.

8.19 BUS CONTROL
The bus control logic (Figure 8-27) controls the transmit and receive functions of the bus transceivers.
The transceivers are in transmit mode for microprocessor controlled read/write a~d fetch transactions
to local memory, local I/O, and during LSI-II bus writes. The transceivers go to the receive mode
during an LSI-ll bus read. During DMA, the transceivers go to the receive mode to accept the local
device address and will stay in this mode until the device is addressed. When a read transaction occurs,
the transceivers go into the transmit mode. When the - BCLR input is high, the transceivers are able
to transmit data. When - BCLR is asserted low, the transceivers are disabled. During an IAK transac­
tion, the - IAK input to AND gate E 12 goes low to disable the transceiver high byte, and the low byte
goes to the receive mode to accept the vector.

The receive function of the bus transceivers will override the transmit function any time the receive
inputs are enabled high. When data is to be read from an LSI-ll bus device, the -CSQB input is low
and inverter E21 makes it a high input to AND gate EI2. The TREAD input to AND gate EI8 is set
high for the receive function. When the data is on the bus, the RRPLY input to AND gate El2 goes
high and the output of the gate goes high. The two OR gates E2 allow the high output to enable the
receive low byte and receive high byte inputs to the transceivers. The data is now read onto the TDAL
bus. During an interrupt transaction, the TIAKO input goes high and enables only the receive low byte
input of the transceivers.

8-37

RRPLY

-TMRP

BRPLY L TMER

R5 E29
+5 --w_--.

C9

TDIN E9

TDOUT

RAS

MR-7502

Figure 8-26 Reply Time-out

The DMA transaction grants bus control to the external device that requested the direct memory grant.
The DMG input goes high for the duration of the DMA transaction. This input enables AND gate E6
and NAND gate E16. The BSYNC L input is high and inverted low to the two NAND gates E16. This
switches the NAND gate outputs high, and the receive and transmit functions are both enabled. How­
ever, the receive function overrides the transmit function, and the TDAL bus receives data from the
BDAL bus. This condition stays until the bus master asserts the BDIN L input low. It is inverted high
and enables the NAND gate E16. The -CSQB input is dependent upon the address received from the
BDAL bus. This input is low if the address is a bus location and high if the address is for the local
memory or I/O device. A low input sets the output of NAND gate E16 high and enables the receive
function of the transceivers. At the same time, the -CSQB low input is inverted high, and the output
of NAND gate E16 is switched low to disable the transmit function. When the -CSQB input is high
indicating the local memory is being addressed, the NAND gate E16 is enabled. The -CSQB high
input is also inverted low to NAND gate E16 and enables the receive function. The bus master now
asserts either BDIN L or BDOUT L bus signals. The - READ input goes low for the BDIN L signal
and goes high for the BDOUT L signal. If - READ goes high, it is inverted low and switches the out­
put of NAND gate E16 high to enable the receive function. If -READ goes low, it is inverted high
and switches the output of NAND gate E16 low to inhibit the receive function. The transmit function
stays enabled. Therefore, when the bus master asserts the BDIN L bus signal, the data is transmitted
from the module and when it asserts the BDOUT L bus signal, the data is received by the module even
if it was not addressed.

The BBS7 L bus signal is enabled low when the bus addresses the I/O page during the address part of a
transaction. This is the upper eight kilobytes from 56Kb to 64Kb. This page is normally reserved for
I/O devices on the LSI-ll bus, but the 4Kb of local RAM memory reside within this page. It is also
possible to have an additional 2Kb of memory within this page.

To address this page, the TDAL bus bits 13, 14, and 15 are set high and are inputs to NAND gate E34.
The output is switched low and goes to the NOR gate E26. The SELl input to NOR gate E26 is low for
read, write, and fetch transactions. When both inputs to NOR gate E26 are low, the output is switched
high. This is inverted to a low for BBS7 L output and is inverted again to set RBS7 high.

8-38

TIAKO

DRRPL Y

TREAD

-CSQB

READ

DMG

TSYNC

00
I

W -BCLR \0

-IAK

TDAL13
TDAL14

E34
TDAL15

SELl

TDALO-15

XHB

Figure 8-27 Bus Control

005

BUS
TRANSCEIVER

LOW BYTE
(E43, E47)

HIGH BYTE
(E51, E52)

BDAL 0-15

B INIT L

-RSYNC

RBS7

BBS7L

MR-7521

9.1 INTRODUCTION

CHAPTER 9
LSI-II BUS

The LSI-ll bus provides interconnections for LSI-ll type modules, such as processors, memories, and
interfaces, to communicate with each other. Not all of the bus functions are supported by the SBC-
11/21, and only the supported functions are described in this chapter. For a complete explanation of
the LSI-II bus, see the PDP-ll Bus Handbook.

The LS I -II bus has forty signal lines: eighteen are used for data and twenty-two are used for control.
The SBC-II/21 supports only sixteen data lines and eighteen control lines.

There are four groups of control lines.

I. Six data transfer control lines:

a. BBS7
b. BDIN
c. BDOUT
d.BRPLY
e. BSYNC
f. BWTBT

2. Four direct memory access control lines:

a. BDMGI
b. BDMGO
c. BDMR
d. BSACK

3. Six interrupt control lines:

a. BIAKI
b. BIAKO
c. BIRQ4
d. BIRQ5 (not used by SBC-1I/21)
e. BIRQ6 (not used by SBC-II/2I)
f. BIRQ7 (not used by SBC-II/2I)

4. Six system control lines:

a. BDCOK
b. BPOK
c. BHALT
d. BINIT
e. BREF (not used by SBC-II/21)
f. BEVNT

9-1

Most LSI-II bus signals are bidirectional and use terminations for a negated (high) signal level. Mod­
ules connect to these lines via high impedance bus receivers and open collector drivers. The asserted
state is produced when a bus driver asserts the line low. Although bidirectional lines are electrically
bidirectional (any point on the line can be driven or received), certain lines are functionally unidirec­
tional. These lines communicate to or from a bus master or signal source, but not both. Interrupt ac­
knowledge (BIAK) and direct memory access grant (BDMG) signals are physically unidirectional in a
daisy chain. These signals start at the processor output signal pins. Each is received on device input pins
(BIAKI or BDMGI) and conditionally passed on via device output pins (BIAKO or BDMGO). The
BIAK and BDMG signals are received from higher priority devices and are passed onto lower priority
devices along the bus.

9.2 SBC-H/21 SINGLE-BOARD COMPUTER
The SBC-II/21 module functions on the LSI-II bus and can act as a bus master, a bus slave, or a bus
arbitrator. The module allows a DMA master to access the on-board functions. It supports only sixteen
data/address lines and terminates the other lines. It also contains its own on-board memory and ac­
cesses the bus for external memory or devices. However, while accessing its on-board devices, the SBC-
11/21 asserts bus control signals as it does when communicating with the LSI-ll bus. The memory
maps defining on-board and external addressing are described in Chapter 2. The SBC-ll /21 micro­
processor supports an on-board multilevel interrupt structure, and the BIRQ4 bus interrupt control line
is an active bus interrupt with a level 4 priority. Therefore, the BIRQ5, BIRQ6, and BIRQ7 bus control
interrupt lines are not recognized or accepted by the SBC-ll/21 module. The DMA request is recog­
nized by the module at the lowest interrupt level, but once the DMA master has accessed the bus, there
are no other interrupts until the transfer is complete or the DMA master relinquishes the bus. The
module does not use or support the BREF control line for refreshing dynamic memory.

9.3 MASTERISLA VE RELATIONSHIP
Communication between devices on the bus is asynchronous. A master/slave relationship occurs during
each bus transaction. At any time, there is one device that has control of the bus. This controlling de­
vice is the bus master. The master device controls the bus when communicating with another device on
the bus, the slave. The bus master (the processor or a DMA device) starts a bus transaction. The slave
device responds by acknowledging the transaction in progress and by receiving data from, or trans­
mitting data to, the bus master. LSI-II bus control signals transmitted or received by the bus master or
bus slave device must complete the sequence according to bus protocol.

The processor controls bus arbitration, i.e., which device becomes bus master at any given time. A typi­
cal example of this relationship is the processor, as master, fetching an instruction from memory, which
is always a slave. Another example is a disk, as master, transferring data to memory as slave. Commu­
nication on the LSI-II bus is interlocked so that for certain control signals issued by the master device,
there must be a response from the slave in order to complete the transfer. It is the master/slave signal
protocol that makes the LSI-ll bus asynchronous. The asynchronous operation eliminates the need for
synchronizing with, and waiting for, clock pulses.

A bus cycle completion by the bus master requires a response from the slave device. Each bus master
must include a time-out error circuit that will abort the bus cycle if the slave device does not respond to
the bus transaction within 10 ILS. The actual time before a time-out error occurs must be longer than the
response time of the slowest peripheral or memory device on the bus. The signal assignments are shown
in Table 9-1.

9-2

Table 9-1 Signal Assignments

Number Functional
of Pins Category Signal Names

16 Data/address BDALO, BDAL1, BDAL2 ... BDAL15

6 Data control BDOUT, BRPLY, BDIN, BSYNC, BWTBT,
BBS7

3 Interrupt control BIRQ4, BIAKO, BIAKI

4 DMA control BDMR, BDMGO, BDMGI, BSACK

5 System control BHALT, BDCOK, BPOK, BEVNT, BINIT

3 +5 Vdc

2 + 12 Vdc

2 -12 Vdc

1 +5 B (battery)

8 GND

8 SSPARES

4 MSPARES

2 PSPARES

9.4 DATA TRANSFER BUS CYCLES
Data transfer bus cycles are listed and defined in Table 9-2.

NOTE
The SBC-H/21 microcomputer performs a read
transaction before every write transaction. It does
not perform DATIO or DA TIO(B) bus transactions
as one address. It executes read-modify-write in­
structions by addressing the source as one transac­
tion and addressing the destination as another trans­
action.

9-3

These bus cycles, executed by bus master devices, transfer 16-bit words or 8-bit bytes to or from slave
devices. The bus signals that are listed in Table 9-3 are used in the data transfer operations that are
described in Table 9-2. Data transfer bus cycles can be lowered to two basic types: DATI, and
DA TO(B). These transactions occur between the bus master and one slave device selected during the
addressing section of the bus cycle.

Bus Cycle
Mnemonic

DATI

DATO

DATO(B)

Table 9-2 Data Transfer Operations

Description

Data word input

Data word output

Data byte output

Function (with respect
to the bus master)

Read

Write

Write byte

Table 9-3 Bus Signals Used in Data Transfer Operations

Mnemonic

BDAL<15:00> L

BSYNCL

BDINL

BDOUTL

BRPLYL

BWTBTL

BBS7

9.4.1 Bus Cycle Protocol

Description

16 data/address lines

Bus cycle control

Data input indicator

Data output indicator

Slave's acknowledge of
bus cycle

Write/byte control

I/O device select;
indicates address
is in the I/O page·

Function

BDAL< 15:00> L
are used for word
and byte transfers

Strobe signal

Strobe signal

Strobe signal

Strobe signal

Control signal

Control signal

Before starting a bus cycle, the previous bus transaction must have been completed (BSYNC L ne­
gated) and the device must become bus master. The bus cycle can be divided into two parts, an address­
ing section and a data transfer section. During the addressing section, the bus master outputs the ad­
dress for the correct slave device, memory location, or device register. The selected slave device

9-4

responds by latching the address bits and holding this condition for the duration of the bus cycle until
BSYNC L becomes negated. During the data transfer section, the actual data transfer occurs.

Device Addressing - The device addressing section of a data transfer bus cycle has an address setup and
deskew time and an address hold and deskew time. During the address setup and deskew time, the bus
master:

1. Asserts BDAL< 15:00> L with the correct slave device address bits.

2. Asserts BBS7 L if a device in the I/O page (56Kb-64Kb for SBC-II/21) is being addressed.
(Devices in the I/O page ignore BDAL<I5:13> and decode BBS7 L with
BDAL<12:00>.)

3. Asserts BWTBT L if the cycle is a DATO(B) bus cycle. (Inactive BWTBT L indicates a
DATI or DATIO(B) operation.)

4. Asserts BSYNC at least 150 ns after BDAL<15:00> L, BBS7 L, and BWTBT L are valid.

The BBS7 L address and BWTBT L signal must be asserted at the slave bus receiver for at least 75 ns
before BSYNC goes active. The address hold and deskew time start after BSYNC L is asserted.

The slave device uses the active BSYNC L bus receiver output to clock BDAL address bits, BBS7 L
and BWTBT L, into its internal logic. BDAL<15:00> L, BBS7 L, and BWTBT L will stay active for
25 ns (minimum) after the BSYNC L bus receiver goes active. BSYNC L stays active for the duration
of the bus cycle.

Memory devices usually do not respond to addresses in the I/O page; however, some system appli­
cations may permit memory to reside in the I/O page for use as DMA buffers, read only memory boot­
straps, or diagnostics, etc.

DATI - The DATI bus cycle, shown in Figure 9-1, is a read operation. During DATI, data is input to
the bus master. Data uses 16-bit word transfers over the bus. During the data transfer section of the
DATI bus cycle, the bus master asserts BDIN L 100 ns (minimum) after BSYNC L is asserted. In
response to BDIN L active, the slave device:

l. Asserts BRPLY L after receiving BDIN Land 125 ns (maximum) before BDAL bus driver
data bits are valid.

2. Asserts BDAL< 15:00> L with the addressed data.

When the bus master receives BRPL Y L, the bus master:

l. Waits at least 200 ns deskew time and then accepts input data at BDAL<15:00> L bus
receivers.

2. Negates BDIN L 150 ns (minimum) to 2 j.lS (maximum) after BRPL Y L goes active.

NOTE
Continuous assertion of BSYNC L keeps control of
the bus under the bus master, and the previously ad­
dressed slave device remains selected. Also, a slow
slave device can hold off data transfers to itself by
keeping BRPL Y L asserted. This will cause the
master to keep BSYNC L asserted.

9-5

BUS MASTER
(PROCESSOR OR DEVICE)

ADDRESS DEVICE MEMORY
• ASSERT BDAL <15-00> L

ADDRESS AND
o ASSERT BBS7 IF THE ADDRESS

IS IN THE 56-64KB RANGE
o ASSERT BSYNC L

REQUEST DATA
• REMOVE THE ADDRESS FROM

BDAL <15-00> LAND
NEGATE BBS7 L

• ASSERT BDIN L

TERMINATE INPUT TRANSFER
o ACCEPT DATA AND RESPOND

BY NEGATING BDIN L

TERMINATE BUS CYCLE
o NEGATE BSYNC L

SLAVE
(MEMORY OR DEVICE)

DECODE ADDRESS
o STORE DEVICE SELECTED

OPERATION

INPUT DATA
o PLACE DATA ON BDAL <15-00> L

___ 0 ASSERT BRPLY L

~--------

-----------OPERATION COMPLETED
~--------. NEGATEBRPLYL

• REMOVE DATA FROM
BDAL <15-00> L

Figure 9-1 DATI Bus Cycle

MR·7195

The slave device responds to BDIN L negation by negating BRPL Y L and removing read data from
BDAL bus drives. BRPLY L must be negated 100 ns (maximum) before removal of read data. The bus
master responds to the negated BRPL Y L by negating BSYNC L

Two conditions must be met for the next BSYNC L assertion:

1. BSYNC L must remain negated for 200 ns (minimum).

2. BSYNC L must not become asserted within 300 ns of the previous BRPL Y L negation.

Figure 9-2 illustrates DATI bus cycle timing.

9-6

TIMING AT MASTER DEVICE

(4) R DATA (4)

100 ns MIN

t200 ns MAX

T SYNC
100 ns MIN
8/.15 MAX

T DIN

R RPLY

TmJ tlOO ns MIN
(4)

TWTBT ~ /.. (4)

TIMING AT SLAVE DEVICE

R/T DAL T DATA X (4)
'--......;....:;.;..;.;.;..;...-~~100 ns MAX,O ns MIN

R SYNC

R DIN
----+----'

T RPLY

R BS7 (4)

R WTBT ~ __ --J ~ _________ ..;.(4..;.) __________ _

NOTES:

1. TIMING SHOWN AT MASTER AND SLAVE DEVICE BUS DRIVER
INPUTS AND BUS RECEIVER OUTPUTS

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT SIGNAL
NAMES INCLUDE A "B" PREFIX

4. DO NOT CARE CONDITION

Figure 9-2 DATI Bus Cycle Timing

9-7

DATO(B) - DATO(B), illustrated in Figure 9-3, is a write operation. Data is transferred in 16-bit words
(DATO) or 8-bit bytes (DATO(B)) froin the bus master to the slave device. The data transfer output
can occur after the addressing section of a bus cycle when BWTBT L has been asserted by the bus
master.

The data transfer section of a DATO(B) bus cycle makes a data setup and deskew time and a data hold
and deskew time. During the data setup and deskew time, the bus master outputs the data on
BDAL<15:00> L at least 100 ns after the BSYNC L is asserted. If it is a word transfer, the bus
master negates BWTBT L at least 100 ns after BSYNC L assertion. BWTBT L stays negated for the
length of the bus cycle. If the transfer is a byte transfer, BWTBT L remains asserted. During a byte
transfer, BDAL 00 L selects the high or low byte. This occurs while in the addressing section of the
cycle. If asserted, the high byte (BDAL<15:08> L) is selected; otherwise, the low byte
(BDAL<07:00> L) is selected. The bus master asserts BDOUT L at least 100 ns after BDAL and
BWTBT L bus drives are stable. The slave device responds by asserting BRPLY L within 10 J,LS to avoid
bus time-out. This completes the data setup and deskew time.

During the data hold and deskew time, the bus master receives BRPL Y L and negates BDOUT L.
BDOUT L must stay asserted for at least 150 ns after receiving BRPLY L before being negated by the
bus master. BDAL<15:00> L bus drivers stay asserted for at least 100 ns after BDOUT L negation.
The bus master then negates BDAL inputs. During this time, the slave device senses BDOUT L nega­
tion. The data is accepted, and the slave device negates BRPL Y L. The bus master responds by negat­
ing BSYNC L. However, the processor will not negate BSYNC L for at least 175 ns after negating
BDOUT L. This completes the DATO(B) bus cycle. Before the next cycle, BSYNC L must stay unas­
serted for at least 200 ns. Figure 9-4 shows the DATO(B) bus cycle timing.

9.4.2 Direct Memory Access
DMA is started after the processor (normally bus master) has passed bus mastership to the highest
priority DMA device that is requesting the bus. The processor arbitrates all requests and grants the bus
to the DMA device electrically closest to it. A DMA device remains a bus master until it relinquishes
its mastership. The following control signals are used during bus arbitration.

I. BDMGI L
2. BDMGO L
3. BDMR L
4. BSACK L

DMA grant input
DMA grant output
DMA request line
Bus grant acknowledge

A DMA transaction can be divided into three phases:

1. Bus mastership acquisition phase
2. Data transfer phase
3. Bus mastership relinquish phase

During the bus mastership acquisition phase, a DMA device requests the bus by asserting BDMR L.
The processor arbitrates the request and starts the transfer of bus mastership by asserting BDMGO L.
The maximum time between BDMR L assertion and BDMGO L assertion is DMA latency. This is
processor dependent. BDMGO L/BDMGI L is one signal that is daisy chained through each module in
the backplane. It is driven out of the processor on the BDMGO L pin, enters each module on the
BDMGI L pin, and exits on the BDMGO L pin. This signal passes through the modules in descending
order of priority until it is stopped by the requesting device. The requesting device blocks the output of
BDMGO L and asserts BSACK L. If BDMR L is continuously asserted, the bus will be hung.

9-8

BUS MASTER
(PROCESSOR OR DEVICE)

ADDRESS DEVICE/MEMORY
° ASSERT BDAL <15-00>L

WITH ADRESS AND
° ASSERT BBS7 L (IF ADDRESS IS

IN THE 56-64KB RANGE
° ASSERT BWTBT L (WRITE

CYCLE)
° ASSERT BSYNC L -- ---- --

SLAVE
(MEMORY OR DEVICE)

--~ DECODE ADDRESS
STORE DEVICE SELECTED ---0 --- OPERATION -------OUTPUT DATA

° REMOVE THE ADDRESS FROM
BDAL <15-00> L AND NEGATE
BBS7 LAND BWTBT L

--
° PLACE DATA ON BDAL <15-00> L
° ASSERT BDOUT L ---------- -...

TAKE DATA
° RECEIVE DATA FROM BDAL

LINES

TERMINATE OUTPUT TRANSFER ---­
° NEGATE BDOUT L (AND BWTBT L

IF A DATOB BUS CYCLE)
• REMOVE DATA FROM

BDAL <15-00> L

-------_0
ASSERT BRPLY L

---------...
TERMINATE BUS CYCLE
° NEGATE BSYNC L

OPERATION COMPLETED

...---------- _ ° NEGATE BRPLY L

Figure 9-3 DATO or DATOB Bus Cycle

9-9

MR·7196

T DAL

TSYNC

=:J Ons MIN r-
~ T AD DR X~-----T-D-A-T-A----- ~

, 150ns 1100ns 1'- lOOns ~
~MIN MIN ~ MIN

(4)

8ILs -./

MAX 1,---------,
200nsMIN

TDOUT

300ns MIN

RRPLY

T BS7 (4)

TWTBT ASSERTION = BYTE (4)

lOOns MIN

TIMING AT MASTER DEVICE

R DAL _(_4) __ ..J),(R ADDR ~ _____ R_D_A_T_A _____ J),(
~25nsMIN

(4)

25ns MIN

R SYNC

lOOns MIN --< • .!I~.- 150ns MIN

RDOUT

T RPLY

R BS7 (4) (4)

R WTBT ASSERTION = BYTE (4)

j;: 25ns MIN

TIMING AT SLAVE DEVICE

NOTES:
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A "B" PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MR-1179

Figure 9-4 DATO or DATOB Bus Cycle Timing

9-10

During the data transfer phase, the DMA device continues asserting BSACK L. The actual data trans­
fer is performed as described previously.

NOTE
If multiple data transfers are performed during this
phase, consideration must be given to the use of the
bus for other system functions.

The DMA device can assert BSYNC L for a data transfer 250 ns (minimum) after it receives BDMGI
L and its BSYNC Land BRPL Y L become negated.

During the bus mastership relinquish phase, the DMA device relinquishes the bus by negating BSACK
L. This occurs after completing (or aborting) the last data transfer cycle (BRPLY L negated). BSACK
L may be negated up to a maximum of 300 ns before negating BSYNC L. Figure 9-5 shows the DMA
protocol, and Figure 9-6 shows the DMA request/grant timing.

SBC'-11/21 MICROPROCESSOR
(MEMORY IS SLAVE)

BUS MASTER
(CONTROLLER)

, REQUEST BUS
_---- • ASSERT BDMR L ----------..... --

GRANT BUS CONTROL

• NEAR THE END OF THE

CURRENT BUS CYCLE
(BRPLY L IS NEGATED).
ASSERT BDMGO LAND
INHIBIT NEW PROCESSOR
GENERATED BYSNC L FOR
THE DURATION OF THE
DMA OPERATION.

TERMINATE GRANT -------""
SEQUENCE _----
• NEGATE BDMGO LAND _

WAIT FOR DMA OPERATION ---_
TO BE COMPLETED. --- __

----......

RESUME PROCESSOR
OPERATION --• ENABLE PROCESSOR­

GENERATED BSYNC L
(PROCESSOR IS BUS
MASTER) OR ISSUE
ANOTHERGRANTIFBDMR
LIS ASSERTED_

Figure 9-5 DMA Protocol

9-11

ACKNOWLEDGE BUS
MASTERSHIP
• RECEIVE BDMG
• WAIT FOR NEGATION OF

BSYNC LAND BRPLY L
• ASSERT BSACK L
• NEGATE BDMR L

EXECUTE A DMA DATA
TRANSFER

• ADDRESS MEMORY AND
TRANSFER UP TO 4 WORDS
OF DATA AS DESCRIBED
FOR DATI, OR DATO BUS
CYCLES

• RELEASE THE BUS BY
TERMINATING BSACK L
(NO SOONER THAN
NEGATION OF LAST BRPLY
LlAND BSYNC L.

WAIT 41ls OR UNTI L
ANOTHER FIFO TRANSFER
IS PENDING BEFORE
REQUESTING BUS AGAIN.

MR-71B1

TDMR ----
RDMG ____ -J

TSACK

R/TSYNC

R/T RPLY

~OnsMIN.
~OnsMIN.

~~~6BS7 ________________ J~DDR X~-----D-A-TA----~ 
WTBT,REF) 

NOTES: 
1 TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER 

INPUTS AND BUS RECEIVER OUTPUTS. 

2 SIGNAL NAME PREFIXES ARE DEFINED BELOW: 
T = BUS DRIVER INPUT 
R = BUS RECEIVER OUTPUT 

3 BUS DRIVER OUTPUT AND BUS RECEIVER INPUT 
SIGNAL NAMES INCLUDE A "B" PREFIX. 

Figure 9-6 DMA Request/Grant Timing 

9.S INTERRUPTS 
The LSI-ll bus signals used in interrupt transactions are: 

1. 
2. 
3. 
4. 
5. 
6. 

BIRQ4 L 
BIAKI L 
BIAKO L 
BDAL<15:00> L 
BDIN L 
BRPLY L 

9.S.1 Device Priority 

Interrupt request priority level 4 
Interrupt acknowledge input 
Interrupt acknowledge output 
Da ta / address lines 
Data input strobe 
Reply 

SECOND 
REQUEST 

MA·7178 

The SBC-ll/21 supports only one method of device priority arbitration: position defined arbitration 
(priority is determined only by electrical position on the bus). The closer a device is to the processor, the 
higher its priority. 

9.S.2 Interrupt Protocol 
Interrupt protocol on the SBC-ll/21 has three phases: 

1. Interrupt request phase 
2. Interrupt acknowledge and priority arbitration phase 
3. Interrupt vector transfer phase 

Figure 9-7 shows the interrupt request/acknowledge sequence. 



SBC·11/21 
MICROPROCESSOR 

STROBE INTERRUPTS 
" ASSERT BDIN L 

I 
I 
+ 

GRANT REQUEST 
" PAUSE AND ASSERT BIAKO L 

RECEIVE VECTOR & TERMINATE 
REQUEST 

" INPUT VECTOR ADDRESS 
" NEGATE BDIN LAND BIAKO L 

PROCESS THE INTERRUPT 

" SAVE INTERRUPTED PROGRAM 
PC AND PS ON STACK 

" LOAD NEW PC AND PS FROM 
VECTOR ADDRESSED LOCATION 

" EXECUTE INTERRUPT SERVICE 
ROUTINE FOR THE DEVICE 

-­~--

DEVICE 

INITIATE REQUEST 

_" ASSERT BIR04 L 

--------... 
RECEIVE BDIN L 

"STORE INTERRUPT SENDING 
IN DEVICE 

---------RECEIVE BIAKI L 
" RECEIVE BIAKI L AND INHIBIT 

BIAKO L 

" PLACE VECTOR ON BDAL <15-00> L 
" ASSERT BRPLY L 

_" NEGATE BIRO L -------
-----------
--------

COMPLETE VECTOR TRANSFER 
" REMOVE VECTOR FROM BDAL BUS 

_ -" NEGATE BRPL Y L 

MR-7197 

Figure 9-7 Interrupt Request/Acknowledge Sequence 

The interrupt request phase starts when a device meets its specific conditions for interrupt requests 
(e.g., the device is ready, done, or an error has occurred). The interrupt enable bit in a device status 
register must be set. The device then sets up the interrupt by asserting the interrupt request line. 
BIRQ4 L is the only hardware priority level on the SBC-11/21 and is asserted for all interrupt requests. 
The interrupt request line stays asserted until the request is acknowledged. 

During the interrupt acknowledge and priority arbitration phase, the SBC-ll /21 processor will ac­
knowledge interrupts under the following conditions: 

1. The device interrupt priority is higher than the current PS<7:5>. 

2. The processor has completed instruction execution, and no additional bus cycles are waiting. 

9-13 



The processor acknowledges the interrupt request by asserting BDIN L, and, 225 ns (minimum) later, 
asserting BIAKO L. The device electrically closest to the processor receives the acknowledge on its 
BIAKI L bus receiver. 

When the device receives the acknowledge, it reacts as follows: 

1. If not requesting an interrupt, the device asserts BIAKO L, and the acknowledge moves to 
the next device on the bus. 

2. If the device was requesting an interrupt, the acknowledge is blocked using the leading edge 
of BDIN L and arbitration is granted. The interrupt vector transfer phase begins. 

The interrupt vector transfer phase is enabled by BDIN Land BIAKI L. The device responds byassert­
ing BRPL Y L and its BDAL< 15:00> L bus driver inputs with the vector address bits. The BDAL bus 
driver inputs must be stable within 125 ns (maximum) after BRPL Y L is asserted. The processor then 
inputs the vector address and negates BDIN Land BIAKO L. The device then negates BRPLY Land, 
100 ns (maximum) later, removes the vector address bits. The processor then enters the device's service 
routine. 

NOTE 
Propagation delay from BIAKI L to BIAKO L must 
not be greater than 500 ns per LSI-ll bus slot. 

The device must assert BRPL Y L within 10 f.,LS 

(maximum) after the processor asserts BIAKI L. 

9.6 CONTROL FUNCTIONS 
The following LSI-II bus signals provide control functions. 

1. BHALT L 
2. BINIT L 
3. BPOK H 
4. BDCOK H 
5. BEVNT L 

9.6.1 Halt 

Processor halt 
Initialize 
Power OK 
DC power OK 
External event 

Refer to Chapter 2 an for explanation of the BHALT L response. 

9.6.2 Initialization 
Devices on the bus are initialized when BINIT L is asserted. The microprocessor can assert BINIT Las 
a result of executing a RESET instruction or as part of a power-up sequence. BINIT L is asserted for 
approximately 17 f.,LS when RESET is executed. 

9.6.3 Power Status 
Power status protocol is controlled by two signals, BPOK Hand BDCOK H. These signals are driven 
by some external device (usually the power supply). 

BPOK H - When asserted, BPOK H indicates that there is at least an 8 ms reserve of dc power and 
that BDCOK H has been asserted for at least 70 ms. Once BPOK H has been asserted, it must stay 
asserted for at least 3 ms. The negation of this line, the first event in the power fail sequence, indicates 
that power is failing and that only 4 ms of dc power reserve remain. 

BOCOK H - When asserted,BDCOK H indicates that dc power has been stable for at least 3 ms. Once 
asserted, this line stays asserted until the power fails. Its negation indicates that only 5 f.,LS of dc power 
reserve remain. 

9-14 



9.6.4 Power-UpjPower-Down Protocol 
Power-up protocol (Figure 9-8) begins when the power supply applies power with BDCOK H negated. 
This forces the processor to assert BINIT L. When the dc voltages are stable, the power supply, or 
other external device, asserts BDCOK H. The processor responds by clearing the PSW. BINIT L re­
mains asserted until the assertion of BDCOK H. The processor continues to test for BPOK H until it is 
asserted. The power supply asserts BPOK H 70 ms (minimum) after BDCOK H is asserted. The pro­
cessor then performs its power-up sequence. Normal power must be maintained at least 3 ms before a 
power-down sequence can start. 

A power-down sequence starts when the power supply negates BPOK H. When the current instruction 
is completed, the microprocessor traps to a power-down routine at location 24. The routine must provide 
for loading 340 into the PSW, execute a RESET instruction, and terminate in a WAIT instruction or 
branch on itself. There should be no DMA requests issued after the RESET is executed. This prevents 
any possible memory destruction in the battery supported system as the dc voltages fail. 

BINIT L 

B POK H 

..... 
BDCOK H 

- ~ 3ms 
MIN 

DC POWER 
V 

-~ 

NOTE 
SHe-Hj21 does not generate HINIT L during the 
power-down sequence. The power-down routine must 
therefore include a RESET instruction to set bus de­
vices into a known state. 

- 1_ 50"sMAX 

/ 
_3msMIN -

SOFTWARE 
CONTROLLED 

P!II 
HARDWARE 

;rccEO 

_ 2oomsj;: 
MAX 

70ms MIN 4- 14- 4msMIN- 1 
~ 8ms MIN 5"sMIN 

70msMIN 

POWER-UP 
~SEQUENCE 

NORMAL POWER-DOWN ~ POWER-UP 
POWER 

NOTE: 
ONCE A POWER-DOWN SEQUENCE IS S.TARTED, 
IT MUST BE COMPLETED BEFORE A POWER-UP 
SEQUENCE IS STARTED. 

SEQUENCE "I 

Figure 9-8 Power-Up/Power-Down Timing 

9-15 

SEQUENCE 

A 
I-

NORMAL ..... 
POWER 

MR-'1S4 



9.7 LSI-ll BUS ELECTRICAL CHARACTERISTICS 
Configuring LSI-II bus systems requires an understanding of its transmission line characteristics. For a 
discussion of these characteristics, see the PDP-II Bus Handbook. 

9.8 MODULE CONTACT FINGER IDENTIFICATION 
All Digital plug-in modules, including the SBC-II/2I, use the same contact finger (pin) identification 
system. The LSI-ll bus is based on the use of double-height modules that plug into a 2-s10t bus con­
nector. Each. slot contains thirty-six lines (eighteen each on both the component and solder sides of the 
circuit board). 

Slots, shown as row A and row B in Figure 9-9, include a numeric identifier for the side of the module. 
The component side is defined as side 1; the solder side is defined as side 2. Letters A through V (ex­
cept G, I, 0, and Q) identify a specific pin on a side of a slot. Table 9-4 lists and identifies the bus pins 
of the double-height module. For a summary, refer to Table 1-1. The bus pin identifier terminating with 
a I is found on the component side of the board; a bus pin identifier terminating with a 2 is found on the 
solder side of the board. A typical pin is defined as follows: 

AE2: row A, pin E, side 2 

The positioning slot between the two rows of pins matches with a guide on the connector block for 
correct module positioning. 

ROWA 

ROWB 

PIN BV1 
PIN BV2 

MR-7177 

Figure 9-9 Double-Height Module Contact Finger Identification 

9-16 



Bus Pin 

AEl 

AFl 

AJI 

AKl 
ALl 

AMI 

ANI 

API 

ATI 

AUl 

AVI 

BAI 

BBI 

BHI 

Mnemonic 

SSPAREI 
(alternate + 5B) 

SSPARE2 

GND 

MSPAREA 
MSPAREA 

GND 

BDMRL 

BHALT L 

GND 

PSPAREI 

+5B 

BDCOK H 

BPOKH 

SSPARE8 

Table 9-4 Bus Pin Identifiers 

Description 

Special spare - not assigned or bused in Digital cable or backplane 
assemblies; available for user connection. Optionally, this pin may be 
used for + 5 V battery ( + 5B) backup power to keep critical circuits 
alive during power failures. A jumper is required on LSI-ll bus op­
tions to open (disconnect) the +5B circuit in systems that use this line 
as SSPAREI. 

Special spare - not assigned or bused in Digital cable or backplane 
assemblies; available for user interconnection. 

Ground - system signal ground and dc return. 

Maintenance spare - normally connected together on the backplane at 
each option location (not a bused connection). 

Ground - system signal ground and dc return. 

Direct memory access (DMA) request - a device asserts this signal to 
request bus mastership. The processor arbitrates bus mastership be­
tween itself and all DMA devices on the bus. If the processor is not 
bus master (it has completed a bus cycle, and BSYNC L is not being 
asserted by the processor), it grants bus mastership to the requesting 
device by asserting BDMGO L. The device responds by negating 
BDMR L and asserting BSACK L. 

Processor halt - refer to Chapter 2. 

Ground - system signal ground and dc return. 

Spare - not assigned; customer usage not recommended; prevents 
damage when modules are inserted upside down. 

+ 5 V battery power - secondary + 5 V power connection. Battery 
power can be used with certain devices. 

DC power OK - power supply-generated signal that is asserted when 
there is sufficient dc voltage available to sustain reliable system oper­
ation. 

Power OK - asserted by the power supply 70 ms after BDCOK. Ne­
gated when ac power drops below the value required to sustain power 
(approximately 75% of nominal). When negated during processor op­
eration, a power fail trap sequence is initiated. 

Special spare - not assigned or bused in Digital cable and backplane 
assemblies; available for user interconnection. 

9-17 



Bus Pin 

B11 

BKI 
BLI 

BMI 

BNI 

BRI 

BSI 

BTl 

BU1 

BV1 

AA2 

AB2* 

AC2 

AD2 

AE2 

AF2 

Mnemonic 

GND 

MSPAREB 
MSPAREB 

GND 

BSACK L 

BEVNTL 

PSPARE4 

GND 

PSPARE2 

+5 

+5 

-12 

GND 

+12 

BDOUTL 

BRPLY L 

Table 9-4 Bus Pin Identifiers (Cont) 

Description 

Ground - system signal ground and dc return. 

Maintenance spare - normally connected together on the backplane at 
each option location (not a bused connection). 

Ground - system signal ground and dc return. 

This signal is asserted by a DMA device in response to the processor's 
BDMGO L signal, indicating that the DMA device is bus master. 

External event interrupt request - when asserted, the processor re­
sponds (if PS bit 7 is zero) by entering a service routine via vector 
address 100. A typical use of this signal is a line time-clock interrupt. 

Power spare 4 - not assigned a function; not recommended for use. 

Ground - system signal ground and dc return. 

Power spare 2 - not assigned a function; not recommended for use. If 
a module is using - 12 V (on pin AB2) and if the module is acciden­
tally inserted upside down in the backplane, -12 Vdc appears on pin 
BUI. 

+5 V power - normal +5 Vdc system power. 

+ 5 V power - normal + 5 V dc system power. 

-12 V power - -12 Vdc (optional) power for devices requiring this 
voltage. 

Ground - system signal ground and dc return. 

+ 12 V power - 12 V dc system power. 

Data output - BDOUT, when asserted, implies that valid data is avail­
able on BDAL<0.:15> L and that an output transfer, with respect to 
the bus master device, is taking place~ BDOUT L is deskewed with 
respect to data on the bus. The slave device responding to the BDOUT 
L signal must assert BRPL Y L to complete the transfer. 

Reply - BRPL Y L is asserted in response to BDIN L or BDOUT L 
and during IAK transactions. It is generated by a slave device to in­
dicate that it has placed its data on the BDAL bus or that it has ac­
cepted output data from the bus. 

9-18 



Bus Pin Mnemonic 

AH2 BDIN L 

AJ2 

AK2 

AL2 

AM2 
AN2 

BSYNC L 

BWTBT L 

BIRQ4 L 

BIAKI L 
BIAKO L 

Table 9-4 Bus Pin Identifiers (Cont) 

Description 

Data input - BDIN L is used for two types of bus operation: 

1. When asserted during BSYNC L time, BDIN L implies an input 
transfer with respect to the current bus master and requires a re­
sponse (BRPL Y L). BDIN L is asserted when the master device is 
ready to accept data from a slave device. 

2. When asserted without BSYNC L, BDIN L indicates that an in­
terrupt operation is occurring. 

The master device must deskew input data from BRPL Y L. 

Synchronize - BSYNC L is asserted by the bus master device to in­
dicate that it has placed an address on BDAL<O:15> L. The transfer 
is in process until BSYNC L is negated. 

Write/byte - BWTBT L is used in two ways to control a bus cycle: 

1. It is asserted at the leading edge of BSYNC L to indicate that an 
output sequence is to follow (DATO or DATO(B», rather than an 
input sequence. 

2. It is asserted during BDOUT L, in a DATO(B) bus cycle, for byte 
addressing. 

Interrupt request priority level 4 - a level 4 device asserts this signal 
when its interrupt enable and interrupt request flips-flops are set. If 
the PSW bit 7 is zero, the processor responds by acknowledging the 
request by asserting BDIN Land BIAKO L. 

Interrupt acknowledge - in accordance with interrupt protocol, the 
processor asserts BIAKO L to acknowledge receipt of an interrupt. 
The bus transmits this to BIAKI L of the device electrically closest to 
the processor. This device accepts the interrupt acknowledge under 
two conditions: 

1. The device requested the bus by asserting BIRQ4 L. 

2. The device has the highest priority interrupt request on the bus at 
that time. 

If these conditions are not met, the device asserts BIAKO L to the 
next device on the bus. This process continues in a daisy chain fashion 
until the device with the highest interrupt priority receives the inter­
rupt acknowledge signal. 

9-19 



Bus Pin 

AP2 

AR2 
AS2 

AT2 

AU2 
AV2 

BA2 

BB2 

Be2 

BD2 

Mnemonic 

BBS7 L 

BDMGI L 
BDMBO L 

BINIT L 

BDALO L 
BDAL1L 

+5 

-12 

GND 

+12 

Table 9-4 Bus Pin Identifiers (Cont) 

Description 

Bank 7 select - the bus master asserts this signal to reference the I/O 
page (including that portion of the I/O page reserved for nonexistent 
memory). The address in BDAL<O:12> L when BBS7 L is asserted 
is the address within the I/O page. 

Direct memory access grant - the bus arbitrator asserts this signal to 
grant bus mastership to a requesting device according to bus master­
ship protocol. The signal is passed in a daisy chain from the arbitrator 
(as BDMGO L) through the bus to BDMGI L of the next priority de­
vice (electrically closest device on the bus). This device accepts the 
grant only if it requested to be bus master (by a BDMR L). If not, the 
device passes the grant (asserts BDMGO L) to the next device on the 
bus. This process continues until the requesting device acknowledges 
the grant. 

Initialize - this signal is used for system reset. All devices on the bus 
are to return to a known, initial state (i.e., registers are reset to zero, 
and logic is reset to state zero). Exceptions should be completely docu­
mented in programming and engineering specifications for the device. 

Data/address lines - these two lines are part of the sixteen-line 
datal address bus over which address and data information are com­
municated. Address information is first placed on the bus by the bus 
master device. The same device then either receives input data from, 
or outputs data to, the addressed slave device or memory over the 
same bus lines. 

+5 V power - normal +5 Vdc system power. 

-12 V power - -12 Vdc (optional) power for devices requiring this 
voltage. 

Ground - system signal ground and dc return. 

+ 12 V power - + 12 V system power. 

9-20 



Bus Pin 

BE2 
BF2 
BH2 
BJ2 
BK2 
BL2 
BM2 
BN2 
BP2 
BR2 
BS2 
BT2 
BU2 
BV2 

Mnemonic 

BDAL2 L 
BDAL3L 
BDAL4 L 
BDAL5L 
BDAL6 L 
BDAL7 L 
BDAL8 L 
BDAL9 L 
BDAL10 L 
BDALll L 
BDAL12 L 
BDAL13 L 
BDAL14 L 
BDAL15 L 

Table 9-4 Bus Pin Identifiers (Cont) 

Description 

Data / address lines - these fourteen lines are part of the sixteen-line 
data/address bus previously described. 

*LSI-II modules that require negative voltages contain an inverter circuit (on each module) that generates the required volt­
age(s). Hence, -12 V power is not required with Digital-supplied options. 

9-21 





APPENDIX A 
INSTRUCTION TIMING 

The fetch and execute times listed in Table A-I assume that the SBC-llj2I is transacting with local 
devices that do not require cycle slips when accessed. 

Table A-I Instruction Timing 

Fetch and Number of 
Single Operand Destination Execute Bus Number of 
Instructions Mode Time (,us) Transactions Microcycles 

CLR(B), COM(B), 0 2.44 1 4 
INC(B), DEC(B), 1 4.27 3 7 
NEG(B), ROR(B), 2 4.27 3 7 
ROL(B), ASR(B), 3 5.49 4 9 
ASL(B), SWAP, 4 4.88 3 8 
ADC(B), SBC(B), 5 6.10 4 10 
SXT,MFPS, 6 6.10 4 10 
XOR 7 7.32 5 12 

0 2.44 1 4 
1 3.66 2 6 
2 3.66 2 6 

TST(B) 3 5.49 3 8 
4 4.27 2 7 
5 5.49 3 9 
6 5.49 3 9· 
7 6.71 4 11 

0 4.88 1 8 
1 6.10 2 10 
2 6.10 2 10 

MTPS 3 7.32 3 12 
4 6.71 2 11 
5 7.93 3 13 
6 7.93 3 13 
7 9.16 4 15 

A-I 



Table A-I Instruction Timing (Cont) 

Source Mode 
Time (its) Number of 

Double Operand Includes Bus Number of 
Instructions Source Mode Fetch Transactions Microcycles 

MOY(B), CMP(B), 0 1.83 1 3 
ADD,SUB, 1 3.05 2 5 
BIT(B), BIC(B), 2 3.05 2 5 
BIS(B) 3 4.27 3 7 

4 3.66 2 6 
5 4.88 3 8 
6 4.88 3 8 
7 6.10 4 10 

Destination Number of 
Double Operand Destination Mode Bus Number of 
Instructions Mode Time (its) Transactions Microcycles 

MOY(B), CMP(B), 0 0.61 0 1 
ADD,SUB, 1 2.44 2 4 
BIT(B), BIC(B), 2 2.44 2 4 
BIS(B) 3 3.66 3 6 

4 3.05 2 5 
5 4.27 3 7 
6 4.27 3 7 
7 5.49 4 9 

0 0.61 0 1 
1 1.83 1 3 
2 1.83 1 3 

CMP(B), BIT(B) 3 3.05 2 5 
4 2.44 1 4 
5 3.66 2 6 
6 3.66 2 6 
7 4.88 3 8 

Jump and Fetch and Number of 
Subroutine Destination Execute Bus Number of 
Instructions Mode Time (its) Transactions Microcycles 

1 3.05 2 5 
2 3.66 2 6 

JMP 3 3.66 3 6 
4 3.66 2 6 
5 4.27 3 7 
6 4.27 3 7 
7 5.49 4 9 

A-2 



Table A-I Instruction Timing (Cont) 

Jump and Fetch and Number of 
Subroutine Destination Execute Bus Number of 
Instructions Mode Time (Jots) Transactions Microcycles 

1 5.49 4 9 
2 6.10 4 10 

JSR 3 6.10 5 10 
4 6.10 4 10 
5 6.71 5 11 
6 6.71 5 11 
7 7.90 6 13 

RTS NA 4.27 2 7 

SOB NA 3.66 1 6 

Branch, Trap, Fetch and Number of 
and Interrupt Destination Execute Bus Number of 
Instructions Mode Time (Jots) Transactions Microcycles 

BR, BNE, BEQ, NA 2.44 1 4 
BPL, BMI, BVe, 
BVS, Bee, Bes, 
BGE, BLT, BGT, 
BLE, BHI, BLOS, 
BHIS, BLO 

EMT, TRAP, NA 9.77 7 16 
BPT, lOT 

RTI NA 4.88 3 8 

RTT NA 6.71 3 11 

Miscellaneous 
and Condition Fetch and Number of 
Code Destination Execute Bus Number of 
Instructions Mode Time (Jots) Transactions Microcrcles 

HALT NA 8.54 5 14 

WAIT NA 2.44 4 
then loop 

RESET NA 22.28 1 39 

A-3 



Miscellaneous 
and Condition 
Code 
Instructions 

NOP 

CLC, CL V, CLZ, 
CLN, CCC, SEC, 
SEV, SEZ, SEN, 
SCC 

MFPT 

Table A-l. Instruction Timing (Cont) 

Fetch and Number of 
Destination Execute Bus Number of 
Mode Time (.us) Transactions Microcycles 

NA 3.66 1 6 

NA 3.66 1 6 

NA 3.05 1 5 

The measure of LSI-II bus interrupt latency is the time from the assertion of BIRQ until BIAKI is 
accepted by the interrupting device electrically closest to the processor on the LSI-ll bus. 

The measure of local interrupt latency is the time from assertion of the request until the time the micro­
processor is ready to fetch the first instruction in the interrupt service routine. This time is primarily 
comprised of the time to perform two pushes and a PC and PSW restore. 

Interrupt Latency: LOCAL 
LSI-II BUS 

23.2.us 
9.3 .us 

NOTE 
Assume that the stack and vector memory reside on 
the SBC-H/2l and that the LSI-H bus device can 
assert BRPL Y and vector within 600 ns after receiv­
ing IAKI. The service latency (time from BIRQ until 
the time the microprocessor is ready to fetch the 
first instruction in the interrupt service routine) de­
pends on the response time of the interrupting device 
(i.e., RDIN to TRPLY and negation of TRPLY). 

DMA latency is the period of time between a device asserting its BDMR and receiving BDMGI when 
it resides on the LSI-ll bus as the electrically closest DMA device to the processor. 

DMA latency: 1.3 .us (minimum) 

WAIT instruction latencies: 

Internal vector: 
External vector: 
DMA: 

11.8 .us 
12.4 .us 
5.06.us 

A-4 

11.0 .us (maximum) 



APPENDIX B 
PROGRAMMING DIFFERENCE LIST 

DIFFERENCES BETWEEN THE SBC-llj21, LSI-llj2, AND LSI-llj23 
Table B-1 presents a concise comparison of the SBC-l1/21, LSI-ll/2, and LSI-ll/23 modules. 

Table B-1 SBC-llj21, LSI-llj2, and LSI-llj23 Comparisons 

Activity 

OPR %R,(R) + or OPR %R, - (R) 
using the same register as both 
source and destination: contents 
of 'R' are incremented (decremented) 
by two before being used as the 
source operand. 

OPR %R,@(R)+ orOPR %R,@-(R) 
using the same register as both 
source and destination: contents 
of 'R' are incremented (decremented) 
by two before being used as the 
source operand. 

In the previous two cases, initial 
contents of 'R' are used as the 
source operand. 

OPR PC,X(R); OPR PC,@X(R); 
OPR PC,@A; or OPR PC,A: location A 
will contain the PC of OPR + 4. 

In the previous case, location A 
will contain the PC of OPR + 2. 

JMP (R)+ or JSR reg,(R)+: initial 
contents of 'R' are used as the 
new Pc. 

JMP %R or JSR reg, %R traps to 4 
(illegal instruction). 

SBC-llj21 LSI-llj2 

x 

x 

x 

x 

x 

x x 

x x 

B-1 

LSI-llj23 

x 

x 

x 

x 

x 



Table B-1 SBC~llj21, LSI-llj2, and LSI-llj23 Comparisons (Coot) 

Activity SBC-Uj21 LSI-Uj2 LSI-Uj23 

Only one LSI-II bus in~errupt X X 
level (BR4) exists. 

Four local interrupt levels exist. X 

Four LSI-II interrupt levels exist. X 

Stack overflow not implemented. X X 

A stack overflow trap exists. X 

The first instruction in an X X X 
interrupt routine will not be 
executed if another interrupt 
occurs at a higher priority level 
than assumed by the first interrupt. 

Eight general-purpose registers. X X X 

PSWaddress 177776 not implemented. X X 
Must use MTPS and MFPS instructions. 

Only implicit references CRTI, RTT, X X X 
traps, and interrupts) can load 
T-bit. Console cannot load T-bit. 

If an interrupt occurs during an X X X 
instruction that has the T-bit set, 
the T-bit trap is acknowledged 
before the interrupt. 

If RTI sets the T-bit, T-bit trap X X X 
is acknowledged immediately following 
RTI. 

T-bit trap will sequence out of X X 
WAIT instruction. 

If RTT sets the T-bit, the T-bit X X X 
trap occurs after the instruction 
following RTT. 

RESET instruction consists of 10 p,s X X 
of INIT followed by a 90 p,s pause. 
Power fail is not recognized until 
the instruction is complete. 

B-2 



Table B-1 SBC-llj21, LSI-llj2, and LSI-llj23 Comparisons (Cont) 

Activity SBC-llj21 LSI-llj2 LSI-llj23 

RESET instruction consists of 17 X 
J..Ls of INIT followed by a minimum 
3.2 J..Ls pause. Power fail is not 
recognized until the instruction 
is complete. 

Odd address references using the X 
SP do not trap. 

Nonexistent address references X 
using the SP trap to the restart 
address. 

MOVB instruction does a read X 
(DATI) and a write (DATa) bus 
sequence for last memory cycle. 

MaY instruction does a write X X 
(DATa) bus sequence for the last 
memory cycle. 

MaY instruction does a read X 
(DATI) and a write (DATa) bus 
sequence for last memory cycle. 

CLR(B) and SXT do a read (DATI) X 
and a write (DATa) sequence for 
the last bus cycle. 

CLR(B) and SXT do a read (DATI) X 
and a write (DATa) bus sequence 
for the last bus cycle. 

CLR(B) and SXT do a write (DATa) X 
bus sequence for the last bus cycle. 

MARK instruction. X X 

SOB, RTT, SXT, XOR instructions. X X X 

SW AB clears Y. X X X 

ASH, ASHC, DIY, MUL instructions. X X 

B-3 



Table B-1 SBC-llj21, LSI-llj2, and LSI-llj23 Comparisons (Cont) 

Activity SBC-llj21 LSI-llj2 LSI-llj23 

Register addresses (177700- X 
177717) are handled as regular 
memory addresses. No internal 
registers are addressable from 
either the bus or the console. 

Register addresses (177000- X X 
177717) time-out when used as 
program addresses by the CPU. 

If PC contains a nonexistent X X X 
memory address and a bus error 
occurs, PC will have been 
incremented. 

If register contains a nonexistent X X X 
memory address in mode 2 and a bus 
error occurs, register will be 
incremented. 

If register contains an odd value X X X 
in mode 2 and a bus error occurs, 
register will be incremented. 

HALT in user mode traps to 10. X 

HALT instruction pushes PC and X 
PSW. on the stack and loads the PSW 
with 340 and the PC with the restart 
address. 

Only power-up mode 2 implemented. X 

Resident ODT microcode. X X 

Instruction execution runs to X 
completion regardless of bus error. 

BEVNT line interrupt on level 6. X X 

Bus error traps to restart X 
address. Instruction runs to 
completion before trap. 

B-4 



Table B-1 SBC-ll/21, LSI-ll/2, and LSI-ll/23 Comparisons (Cont) 

Activity 

Bus error during IAK vectors 
through 0 and traps to restart 
address. The first instruction 
of service routine is guaranteed 
to execute. 

Only 16-bit addressing supported. 

The no-BSACK 18 I-LS time-out 
implemented. If time-out occurs 
BDMGO aborted. 

Bus halt line is a jumper 
configured nonmaskable interrupt. 
Acknowledgement causes PC and PSW 
to be stacked and the processor 
vectors through level 7 internal 
vector 140. 

Vector address accepted only on 
BDAL<7:2>. This limits vector 
address space to 374. 

Certain vector addresses are 
reserved for local devices other 
than BEVNT. 

*Maintenance instructions 
**Response depends on processor options 

SBC-ll/21 LSI-ll/2 LSI-ll/23 

x 

x x 

x 

x 

x 

x 

B-5 



Table B-2 Illegal Address Traps 

From Through Response 11/21 LSI 11/2 11/23 

210 217 Trap to 10 X * X Reserved 
instruction 

210 227 Trap to 10 X X X Reserved 
instruction 

70000 73777 Trap to 10 X ** ** Extended 
instruction 
set 

75000 75037 Trap to 10 X X ** Floating 
point 

75040 75777 Trap to 10 X ** X Reserved 
instruction 

170000 177777 Trap to 10 X ** ** Reserved 
instruction 

SBe-11/21 Priorities 
Priority of DMA, system traps, external interrupts, internal interrupts, HALT trap, and WAIT: 

DMA 
HALT trap (time-out request) 
Power fail trap 
Traps (illegal instruction, T-bit, EMT) 
Internal interrupt request 
External interrupt request 
WAIT instruction 

(highest priority) 

(lowest priority) 

B-6 



C.l GENERAL 

APPENDIX C 
SOFTWARE DEVELOPMENT 

This appendix describes programming notes that may help application programmers to gain familiarity 
with the SBC-ll/21. The following three topics are discussed: 

1. Running stand-alone programs 
2. The software development process 
3. An application example 

A method of creating, loading, and running stand-alone programs is explained. This is followed by a 
discussion of the software development process as it applies to a ROM based single-board computer. 
The last section of this appendix presents a practical example of a real-time program written to run on 
the SBC-ll/21. The output selected for the program is deliberately simple, however, the methodology 
is applicable to more complex programs. The program has been tested, and studying it should be infor­
mative to first-time users of the SBC-ll/21. 

C.2 RUNNING STAND-ALONE PROGRAMS 
The user can develop stand-alone programs, programs not needing an operating system, on a separate 
RT-ll based system. The .SAV image can then be loaded into the SBC-l1/21 and run. The Macro­
ODT option is needed to load the program and to run it. 

If the stand-alone program is to be used with Macro-ODT, it must have the address of Macro-ODT 
BREAK service routine in location 140 and a PSW value of 300 in location 142. This will enable the 
program to transfer control to Macro-ODT when the BREAK key is pressed. 

To load the stand-alone program from the mass storage device into the SBC-l1/21, the device's boot 
block must be modified. This change extends to locations 0, 2, 4, and 6. Location 0, which normally 
contains 240, must be changed to 260. When the device is booted, this tells the Macro-ODT that the 
mass storage device contains a stand-alone· program. Macro-ODT will then interpret the contents of 
locations 2, 4, and 6 as a RADIX-50 encoded six-character file name and search the directory of the 
volume for that file. The volume must have the RT-ll file structure. When the file is found, the com­
plete file is loaded into contiguous memory starting at location O. Then Macro-ODT loads register RO 
with the number of the unit or drive and register Rl with the CSR address of the booted device. 

The stack pointer (SP) is loaded with the contents of location 42, the program counter (PC) is loaded 
with the contents of location 40, and the program starts execution. A stand-alone program developed on 
an RT-ll based system will have had the correct values for PC and SP in locations 40 and 42. This 
information may be of use to the stand-alone program if it uses overlays. 

The detailed procedure for performing these modifications in the boot block and the stand-alone pro­
gram follows, and will be done on an RT-l1 based system using the SIPP utility. 

C-l 



In the following examples, the program that is to be loaded and run from the stand-alone volume is 
named FOOBAR.SAV and resides on DK. The characters entered by the operator are underlined. 
'<CR>' is a carriage return and not the four characters '<', 'C', 'R', and '>'. The ''''C' and 'Ay' 
symbols are obtained by holding down the 'CTRL' key and typing 'C' or 'V' before releasing 'CTRL'. 
'XXXXXX' is a string of octal digits whose value can be anything but does nothing to the process. 

First, modify the stand-alone program: 

. RSIPP <CR> 

* DK:FOOBAR.SA V <CR> 

Base? <CR> 

Offset? 140 <CR> 

Base Offset Old 

000000 000140 xxxxxx 

000000 000142 xxxxxx 

000000 000144 xxxxxx 

*" C 

New? 

170000 <CR> 

300 <CR> 

Ay <CR> 

NOTE 

;Run the SIPP utility 

;Name of file to be 
patched 

;Defaults to zero 

;Load address of BREAK 
routine at BREAK vector 

;PSW during BREAK routine 

;Exit patching 

;Exit SIPP 

If you are using your own BREAK intercepting rou­
tine, put its address at location 140 in place of the 
value 170000. 

Now modify the boot block: 

.RSIPP<CR> 

*DK:/A <CR> 

Base? <CR> 

Offset? <CR> 

Base Offset Old New? 

000000 000000 xxxxxx 000260 

000000 000002 xxxxxx RFOO<CR> 

000000 000004 xxxxxx RBAR<CR> 

000000 000006 xxxxxx RSAV <CR> 

000000 000010 xxxxxx AY <CR> 

*"C 

C-2 



C.3 THE SOFTWARE DEVELOPMENT PROCESS 
Software development for the SBC-ll/21 can be considered as four discrete steps. These steps are il­
lustrated in Figure C-l. 

1. Design the software and code the source tasks. 

2. Enter, edit, and assemble the tasks that make up the application. 

3. Build the application into a runnable memory image. 

4. Load the program into the SBC-ll/21 and execute the application program. This step in­
cludes the debugging of the application. 

START 

UNDERSTAND PROCESS 
TO BE INTERFACED 
WITH, DO TASK DESIGN 

CREATE THE SOURCE 8 
CODE FILE WITH AN STEP 1. 
EDITOR 

~------r-----~ ~ 

BUILD THE 
APPLICATION 
PROGRAM 

L..------r-----' 

COMPLETED 

8 

MA-7201 

Figure C-I Overview of Software Development 

C-3 



C.3.1 Design of the Software 
An important consideration in the design of application software is the run-time memory configuration. 
Because the SBC-ll/21 is a ROM/RAM system, the location of the ROM/RAM boundaries must be 
defined. All instructions and constants must be arranged separately for location in the ROM section of 
memory. Variable information must be arranged together for location in the RAM section of memory. 
During the development process, the separation of ROM and RAM information must be maintained. 
See the MACRO-II Language Reference Manual for a description of the methods of data and code 
separation. 

C.3.2 Editing and Assembly 
The second step in the development cycle is the entry, editing, and assembly of the application soft­
ware. Entering and creating the application software includes the use of an editor on the development 
system. Once the application software is entered and the designer is satisfied with the contents, it can 
be saved on a mass storage device. The assembler must then be used to convert the source code instruc­
tions into executable code. The result of the assembly process is an object file. 

The assembler detects common assembly language coding errors and issues appropriate warnings. If 
errors are detected, corrections should be made by re-editing the source and reassembling. Once the 
application software has been translated error free into object form, it is ready for the next step. 

C.3.3 Building Process 
The third step in the development cycle is the building process to create a runnable memory image. The 
build process uses the linking of the tasks that make up the application software into a single memory 
image. The building process takes an object module or modules and assigns absolute memory refer­
ences to the information contained in the object code. The user assigns these locations by the sectioning 
of the code that took place during design. The result of the build phase is an executable run-time memo­
ry image that can be loaded and tested. 

C.3.4 Running and Debugging the Program 
The fourth step in the development cycle is the loading of the runnable memory image into the SBC-
11/21. Once loaded, the program can be run and debugged. There are three methods that can be used 
to transfer the software to the target. 

I. ROM transfer. This method uses the programming of ROMS via a PROM blasting utility, 
such as PB-ll, and places the PROMs into the target configuration. This simple loading 
method resembles the final target configuration because actual ROM storage is used. 

2. Media transfer. When this method is used, the application program is loaded, in stand-alone 
form, into the target from a mass storage system. The directions on creating a stand-alone 
bootable program are provided in Paragraph C-2. The target configuration uses LSI-II bus 
RAM memory in place of the SBC-ll/21 on-board ROM during initial startup and debug. 
The SBC-II/21 configuration must contain the Macro-ODT ROMs described in Chapter 4. 
The ODT ROMs provide the means of loading the application program and are used during 
program debug. Media transfer does not reflect the final configuration, but execution from 
RAM makes debugging and testing easier. The speed of the program in this mode is approx­
imately half that of the ROM based system. 

3. Down-line loading. This method of loading allows transfer of the controller software from the 
development system to the target system via a serial communication link. The down-line 
loader must be a development system utility. The target configuration is similar to the media 
transfer configuration. In addition to the LSI-II bus, RAM, and the Macro-ODT ROMs, 
one of the serial I/O lines on the SBC-ll/21 must be dedicated to the communication with 
the development system. 

When the correct loading method is implemented, the final phase of development is to debug and run. 
The loading method used defines the solution that will be taken during debug. 

C-4 



If the application is being loaded via the ROM transfer method, initial testing and debugging is diffi­
cult. When ROM transfer is used, there must be embedded code in the application that will report the 
state of the control system regularly. Another way to check the system is to note changes that occur in 
the external devices. If errors are found, a complete reprogramming of the PROMs is necessary. This 
type of testing and debugging can be difficult. 

When the application is loaded via media transfer, the testing and debugging becomes easier than the 
ROM method. Once the application program is loaded into LSI-II bus RAM or into on-board RAM, it 
can be run using the features of Macro-ODT. The designer can also include reporting tasks and halts in 
the application to examine the current state of the system. Executing out of LSI-II bus RAM during 
debug is approximately twice as slow as running out of the SBC-II/2I on-board memory. If errors are 
found, minor changes can be made in the application code because testing is being done in RAM. This 
deletes the loop of making new run-time memory images for every change. Once the target system is 
running successfully with all of the tasks integrated, the run-time configuration can be set up. The last 
step is to load the application program to ROM and run in the SBC-1l/2I. 

C.4 AN APPLICATION EXAMPLE 
A sample application is illustrated in Figure C-2 and shows the development of a controller program 
using MACRO-II. The sample program will only light the LED used by port C of the SBC-II/2I. The 
LED will light for 10 s when an input is detected on the console port (SLUI). 

START 

l 
POWER-UP ROUTINE 

...---- IS THIS RECOVERY FROM A POWER FAILURE (POWRUP) 

l NO 

INITIALIZE THE DATA STRUCTURES FOR DIAGNOSTICS (DIAG) 

YES 

RESTORE STATUS 
PRIOR TO THE POWER FAIL 
(RECOVR) 

! 
PERFORM DIAGNOSTICS (DIAG) 
TEST SBC-ll/21 SIO, PIO, RAM, ROM 

! 
ANY ERRORS 

! NO 

• REPORT TO OPERATOR, 
---... GO INTO INFINITE LOOP 

INITIALIZE THE DATA STRUCTURES (START) 
FOR CONTROL/MONITOR TASKS 

I 
ENABLE INTERRUPTS (START) 

! 
'--------- WAIT FOR INPUTS (START) 

RECOR BREAK 

INTERRUPT TASK NO.1 
ENTERED BY AN INPUT RECEIVED 
VIA CONSOLE SLU INPUTS 

DO THE FOLLOWING: 

1. SET TIMER FOR TEN SECONDS 
2_ LIGHT THE LED 

TIMER 

INTERRUPT TASK NO.2 
ENTERED EVERY 1/60 OF A SECOND 
BY BEVNT INTERRUPT 

DO THE FOLLOWING: 

1. TICK OFF TIME IF THE TIMER 
IS SET TO GREATER THAN a 

2.IF TIME EXPIRES TURN OFF 
THE LED 

Figure C-2 Application Overview 

c-s 

HANDLE EXCEPTIONS 

POWER FAIL (POWERF) 
BUS ERRORS (RESTRT) 

MR-7200 



The controller program for this simple system is best operated by using an interrupt driven environ­
ment. An interrupt service routine is used to monitor the console port. When an input is received, a 
routine is entered that will set the timer for 10 s and light the LED. A second interrupt service routine 
is used to count up to 10 s and then turn off the LED. This routine is serviced by the BEVNT inter­
rupts. In addition to the application tasks, there are tasks to initialize the input/output devices and data 
structures. There are also diagnostic programs for the SBC-ll/21 and programs used to handle any 
exceptions. The controller program is developed as individual tasks and then integrated into a complete 
final program. 

The monitor program, shown in Figure C-3, consists of power-up programs, diagnostic programs, task 
programs, and exception programs. The power-up programs consist of POWRUP and RECOVR, which 
is started by POWRUP. The diagnostic programs consist of SLUTST, PIOTST, RAMTST, and 
ROMTST. The task programs consist of TIMER, REC, and BREAK. The exception programs consist 
of POWERF, RESTRT, and PRINT. All these programs with the constants and instruction data are 
stored in the ROM memory. The variable data for the application and the stack are stored in the RAM 
memory. Memory map 1 is assumed (Table 2-8), with the program in ROM socket set B, and data in 
battery backed RAM starting at 160000. The load map in Figure C-4 shows actual memory locations 
assigned to code and data. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 000000 
15 000000 
16 
17 000000 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 000000 

176540 

177560 
000052 

176200 
176206 
000261 
000017 

160010 
167776 

106016 

It 

.TITlE FALCON DEVELOPMENT EXAMPLE 

.ENAIIl lC 

.GlOIll POWERF,IIREAK,REC,TIMER,RECOVR,SlUTST,PIOTST,RAMTST,ROMTST 

.GlOBl POWER1,POWER2,ERROR,STACK,RESTRT 

; This is an exa.ple of a simple controller application for the KXTI1-AA. 
;-

.SBTlL Prosraa section definitions 
It 
; Define the three program sections that will be used 
;-

.ABECT 

.PSECT ROM 

.PSECT RAM,D 

.SIITTl EQuates 
It 
; Constant definitions 
;-

RCSRI == 176540 

RCSRC == 177560 
CONBR == 52 

PPA == 176200 
PCW == 176206 
lEDON == 261 
lEDOFF 17· 

RAMBGN 160010 
RAHTOP 167776 

CSUM 106016 

.SBTTl Hacro definitions 
It 

Assisn absolute ••• ors locations 
For ins ructions and constant data 
that will be stored in rD • • e.or~ 
To define all RAM locations 

Auxiliar~ SLU addresses 

Console SlU addresses 
Prosra •• able baud rate .ask (9600) 

Parallel port A 
Parallel control word 
Parallel CSW to lisht the lED 
Parallel CSW to turn off the lED 

Botto. of the user RAH 
Top of the user RAH 

I Checksu. value for the s~ste. tasks 

; Define .acros that will be used b~ the application 
;-

1+ 

.HACRO PUSH ARG 
MOV ARG,-(SP) 

.ENDH 

.HACRO POP ARG 
HOV (SPl+,ARG 

.ENDH 

.SBTTl Entr~ points 

stack push operation 
; MOye the arsu.ent onto the .tack 

stack POP operation 
; .ove the arsu.ant fro. the stack 

; Define entr~ point, interrupt. and trap service routine addresses 
1-

.ASECT 

Figure C-3 Monitor Program 

C-6 



5B 
59 000000 
60 OOOOO~ 
61 
62 00002~ 
63 
6~ 
65 000060 
66 
67 
6B 000100 
69 
70 
71 000140 
72 
73 
74 
75 000000 
76 
77 000000 
7B 
79 
BO 
Bl 
B2 000000 
B3 000006 
8~ 000010 
85 000016 
86 
87 000020 
88 
89 
90 
91 
92 000024 
93 
94 
95 
96 00002~ 
97 000030 
98 000034 
99 

100 000042 
101 0000~6 
102 000050 
103 000054 
104 000060 
105 00006~ 
106 
107 000070 
109 00007~ 
109 000076 
110 000102 
111 000104 
112 000106 
113 000112 
114 
115 
116 
117 
118 000114 
119 
120 
121 
122 000114 
123 000120 
12~ 000126 
125 000132 
126 000136 
127 
129 000140 
129 
130 
131 0001~2 
132 
133 
13~ 

135 
136 0001~2 
137 000146 
139 000150 
139 000152 
140 00015~ 
141 000156 
142 000162 
143 000164 
144 000170 
145 000172 
146 
1~7 
148 
149 
150 

000000 
000167 000000' 
000167 OOOOOOG 
000024 
OOOOOOG 000340 

000060 
OOOOOOG 000300 

000100 
OOOOOOG 000300 

000140 
OOOOOOG 000300 

026727 OOOOOOG 123456 
001006 
026727 OOOOOOG 135724 
001002 

000167 OOOOOOG 

OOOOOOG 
OOOOOOG 

012706 
005067 
052737 000052 17756~ 

004767 
00017~' 

004767 
004767 
004767 
004767 

005767 
001~0~ 
00~767 
000332' 
000777 
00~767 
000253' 

105737 
052737 
106~27 
00~767 
001015' 

000777 

000074 

OOOOOOG 
0000006 
OOOOOOG 
OOOOOOG 

OOOOOOG 

000040 

000030 

177562 
000100 
000000 
000004 

017604 000000 
005216 
005216 
112405 
001406 
105737 17756~ 
100375 
110537 177566 
000770 
000207 

177560 

.=0 

.=24 

.=60 

.=100 

.=1~0 

POWRUP:: 

JHP 
JHP 

.WORD 

.WORD 

.WORD 

.WORD 

POWRUP 
RESTRT 

POWERF,340 

REC,300 

TIHER,300 

BREAK,300 

.SBTTL Power UP routine 

.PSECT ROH 

Juap to the power-up routine 
Ju.P to the restart routine 

Power fail service routine 

Console receiver service routine 

Ti_ar service routine 

Console break service routine 

; Co_e here first under all circu.stances and decide if this is a nor.al 
; power UP or recover~ fro& a power fail 
i-

DIAG:: 
i+ 

CHP 
BNE 
CHP 
BNE 

JHP 

POWER1, t123~56 
DIAG 
POWER2,t13572~ 

DIAG 

RECOVR 

.SBTTL DiaSnostics 

Is this recover~ fro. power failure 
or is it a normal power-u~ ? 
Increase the chance to distinauish 
by check ins asainst a 32 bit pattern 

This a recovery from ~ower fail 

; Do the s~ste. diasnostics 

u: 

START:: 
it 

HOV 
CLR 
BIS 

CALL 
.WORD 
CALL 
CALL 
CALL 
CALL 

TST 
BEQ 
CALL 
.WORD 
DR 
CALL 
.WORD 

tSTACK,SP 
ERROR 
tCONBR,9tRCSRC+~ 

PRINT 
DIAGH 
RAHTST 
ROHTST 
SLUTST 
PIOTST 

ERROR 
1$ 
PRINT 
EHESS 

PRINT 
HHESS 

Initialize the stack 
Initialize the error flas 
Initialize the console SLU 

Tell the o~erator that the power­
UP diagnostics are runnin~ 
Perfor~ the KXTll RAH memor~ test 
Perform the KXTll ROH memor~ test 
Perform the KXTll serial line test 
Perfor~ the KXTll parallel I/O test 

Is the error flas zero 
Yes, no errors proceed to init 
No. diasnostic failure 

Wait until there is operator action 
Indicate that thinss are OK 
and move on 

.SBTTL Initializatiorl camp-Ietion. allow applicat'ion tasks to run 

; This is the start of the main body of the application 
i-

PRINT:: 
it 

TSTB 
BIS 
HIPS 
CALL 
.WORD 

BR 

9tRCSRC+2 
tlOO,@tRCSRC 
to 
PRINT 
GO 

Flush the receiver buffer 
Enable interru~t on the receiver 
Allow interrupts to happen 
Tell the operator that the 
application is UP and runnins 

Sit and wait for interrupts 

; This subroutine prints the actual messaSes 
i-

1$: 

3$: 

.ENADL 
HOV 
INC 
INC 
HOVEl 
BEQ 
TS18 
BPL 
HOVB 
BR 
RETURN 
.DSABL 

LSB 
9(SP),R~ 

(SP) 
(SP) 
(R4)t.R5 
3$ 
URCSRCt4 2. 
R5,IItRCSRC+6 
1$ 

LSEI 

P~int to the besinnins of the messase 
Increment beyond .essese address in the 
callins routine 
Hove the next character to be printed 
Is this the end of messase marker ? 
No, output another character 
Transmitter ready 
Output the character 
Get another character 
60 back 

.SBTTL Hessa_es sent to the operator 
.NLIST BEX 

Figure C-3 Monitor Program (Cont) 

C-7 



151 
152 000174 
153 000253 
154 000332 
155 000412 
156 000445 
157 000517 
15B 000571 
159 000613 
160 000650 
161 000701 
162 000736 
163 001015 
164 001061 
165 
166 
167 

015 
01S 
015 
ois 
015 
015 
015 
015 
015 
015 
015 
015 
040 

000001 

012 
012 
012 
012 
012 
012 
012 
012 
012 
012 
012 
012 
040 

040 
040 
040 
007 
040 
040 
040 
040 
040 
040 
040 
040 
040 

DIAGH: 
HItESS: 
EItESS: 
FItESSI 
SLUE: : 
SLGOOD: 
ItESRA11 
RAGOOD: 
ItESR01: 
ROGOOD: 
PGOOD: : 
GO: : 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.ASCIZ 
,/\SCIZ 
.ASCII 
.ASCIZ 
.EVEN 

.END 

<15>(12)1 The power-up diagnostics are running •• t 1(15)<12> 
<15>(12)1 SYstem checked out, there were no faults 1<15><12> 
<15><12>1 Syste. did not pass initial power UP test 1<15>(12) 
<15><12><7><7><7><7>1 RUN-TIME FAILURE 1<15><12> 
<15>(12)1 Serial line unit dia~nostic failure 1<15><12> 
<15>(12)1 Serial line unit passed diasnostics 1(15)<12) 
<15>(12)1 RAIt failure 1(15)<12> 
<15><12» RAM passed diasnostics 1(15)<12> 
<15><12)1 ROM checksua error 1<15><12> 
<15>(12)1 ROM passed diasnostics 1(15)<12> 
(15)<12)1 Parallel inputloutput passed diaSnostics 1<15><12) 
<15>(12)1 The application is runnins ••• 1 <15><12> 
1 Type any key to liSht the KXTI1-AA LED for io secs.1 

Figure C-3 Monitor Program (Cont) 

RT-ll LINK V06.01C Load Map Mon OB-Feb-B2 04:21123 
C .SAV Title: FALCON Ident: 18:000400 

Section Addr Size Global Value Global Value Global Value 

• ADS. 000000 000400 IRW,I,G8L,ADS,OVRI 
LEDOFF 000017 CONBR 000052 LEDON 000261 
CSUM 106016 RAMBGN 160010 RAM TOP 167776 
PPA 176200 PCW 176206 RCSRl 176540 
RCSRC 177560 

ROM 000400 157400 IRW,I,LCL,REL,CONI 
POWRUP 000400 DIAG 000424 START 000514 
PRINT 000542 DIAGH 000574 HMESS 000653 
EMESS 000732 FMESS 001012 SLUE 001045 
SLGO~O 001117 HESRAI 001171 RAGOOO 001213 
HESR01 001250 RDGDOD 001301 PGDOD 001336 
GO 001415 RECOVR 001556 REC 001634 
TIMER 001656 BREAK 001702 LAST 001716 
POWERF 001720 RESTRT 001764 SLUTST 001774 
RAItTST 002132 ROHTST 002212 PIOTST 002262 

RAM 160000 000332 IRW,D,LCL,REL,CONI 
POWER 1 160010 POWER2 160012 SAVER6 160014 
ERROR 160016 TIME 160020 STACK 160332 

Transfer address 000001, Hi~h limit = 160330 = 2B7BO. words 

Figure C-4 Load Map 

C.4.1 Power-Up Programs 
The controller program starts when the system power is applied. The microprocessor accesses location 
0, which is the jumper configured start address. This location contains a jump to the power-up routine 
POWRUP (see Figure C-5). This routine determines if this is a normal power-up or a recovery from a 
power failure. This is determined by checking the power fail flag in the RAM memory. If the flag is set 
to indicate that the system is recovering from a power fail condition, the program jumps to the RE­
COVR program (see Figure C-6). This program restores the system to the conditions that existed be­
fore the power fail and continues program execution. If the flag is not set, an initial power-up program 
is executed and the program then branches to the diagnostic programs. 

C.4.2 Diagnostic Programs 
The diagnostic programs are entered via a diagnostic initialization routine. The SLUTST program (see 
Figure C-7) is the first diagnostic, and it tests the auxiliary serial line unit on the SBC-ll/21. The 
diagnostic enables the SLU maintenance mode and transmits many test patterns. After a certain 
amount of time, the program checks to see that the test patterns were correctly received. The SLU 
maintenance mode allows data to be transmitted to the EIA port as well as through the internal loop­
back. Therefore, if a device is connected to the port, it will respond to this data. 

C-8 



1 
2 000000 
3 
4 
5 
6 
7 000000 
B 000010 000000 
9 000012 000000 

10 000014 000000 
11 000016 000000 
12 
13 000020 000000 
14 000022 
15 000332 
16 
17 000001 

1 
2 
3 
4 000000 
5 
6 000000 
7 
8 
9 

10 000000 
11 000004 
12 000010 
13 000012 
14 000014 
15 000016 
16 000020 
17 000022 
18 000024 
19 000032 
20 000040 
21 000044 
22 000046 
23 

016706 0000000 

052737 000100 0000000 
052737 OOOOOOG 000004G 
005767 OOOOOOG 
001403 
012737 OOOOOOG OOOOOOG 

24 000054 000002 
25 
26 
27 000001 

.ENABl lC 
• PSECT RAIl. D 

The variable data is assi!!ned to the user RAtI space on the KXT11-AA 

.BlKW 4 
POWER1::.WORD 0 
POWER2::.WORD 0 
SAVER6::.WORD 0 
ERROR:: .WORD 0 

TItlE:: .WORD 0 
.8lKW 100. 

STACK: : 

.END 

Figure C-5 Power-up Task 

.ENABl lC 

Non exi5tan~ KXTll-AA ••• ory 
Power failure 32-bit co.parisien 
fla. 
Stack pointer area for power failure 
Dia.nostic error f1a. 

I Ti .. " fla!! 
This is the stack 

.0lOBl SAVER6.TltlE.RCSRC.CONBR.LEDON.PCW 

.HCALL POP 

.PSECT ROtl 

RECOVR:: 
It 
;This routine is entered if a recoverw fro. a power failure is takins place 
;-

3$: 

HOV 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
BIS 
BIS 
TST 
BEQ 
HOV 

RTI 

.END 

SAVER6.SP 
TItlE 
RS 
R4 
R3 
R2 
Rl 
RO 
tlOO.l!tRCSRC 
tCONBR.@tRCSRC+4 
TIHE 
3. 
tLEDON.@tPCW 

Restore the stack pointer 
Restore the an~ variable inforaation 
Restore the seneral purpose 
.. e!listers 

Re-initialize console SLU, enable 
interrupts and set-up baud rate 
Is the LED ti.er set 
No, continue 
Yes turn the LED on for the rest 
of the time prior to power-fail 
Return fro. point of pOWer-fail 
interrupt 

Figure C-6 Power Fail Recovery 

The second diagnostic, RAMTST (see Figure C-8), tests the RAM memory. The test is performed by 
writing known data into a RAM location and checking that the correct information is in that location. 

The third diagnostic, ROMTST (see Figure C-9), checks the ROM memory. This test calculates a 
checksum on the actual control and monitoring tasks. If there is a checksum error, there is a potential 
failure at some ROM location. 

The last diagnostic, PIOTST (s~e Figure C-IO), checks the parallel I/O port on the SBC-ll/21. '{his 
test verifies that the parallel I/O registers can be addressed. The send/receive capability cannot be 
checked unless there is a loopback connector installed on the 13 connector. When data is written into 
these registers and a device is connected to the port, the device can respond to the data. 

When any of the above diagnostics detect a failure, the program will set an error flag. The diagnostic 
program will check the status of all error flags before it enters the task programs. If an error is found, 
the operator is informed that a diagnostic test failed, and the program enters a loop to wait for the 
operator to interrupt. Each diagnostic will print a message to the operator indicating success or failure. 
If there are no failures, a success message is printed and the program enters the task programs. 

C-9 



1 
2 
3 000000 
4 
:; 000000 
6 
7 
8 
9 

10 000000 
11 000004 
12 000010 
13 
14 000016 
15 000022 
16 000026 
17 000030 
18 000034 
19 000036 
20 000040 
21 000042 
22 000046 
23 000050 
24 000052 
25 000054 
26 000056 
27 000060 
28 000064 
29 000066 
30 000070 
31 000072 
32 000074 
33 000076 
34 000104 
35 
36 000106 
37 000112 
38 000116 
39 000120 
40 000122 
41 000126 
42 000130 
43 
44 000132 
45 
46 
47 
48 

1 
2 
3 000000 
4 
5 000000 
6 
7 
B 
9 

10 000000 
11 000002 
12 000006 
13 
14 000012 
15 000014 
16 000016 
17 000020 
18 000024 
19 000026 
20 000030 
21 000032 
22 000034 
23 000040 
24 000042 
25 000046 
26 
27 000050 
28 000052 
29 000056 
30 
31 
.32 

012701 
105761 
012761 

012702 
012703 
005005 
105761 
100402 
077504 
000422 
111361 
005005 
105711 
100402 
077503 
000413 
126113 
001010 
105723 
001356 
005302 
001412 
062761 
000746 

005267 
004767 
0000006 
000403 
004767 
0000006 
000207 

177 

000001 

011602 

OOOOOOG 
000002 
000006 

000010 
000132' 

000004 

000006 

000002 

000010 

OOOOOOG 
OOOOOOG 

0000006 

040 

016703 0000000 
012700 0000000 

010010 
020010 
001405 
004767 0000000 
0000006 
005203 
000407 
005720 
020027 0000020 
103764 
004767 0000000 
0000006 

010216 
010367 0000000 
000207 

000001 

000004 

000004 

000 

SLUTST: : 

.ENABL 

.6LOBL 

.PSECT 

LC,LSB 
RCSR1,ERROR,PRINT,SLUE,SLOOOD 
ROH 

This routine checks the auxiliary SLU port on the KXT11-AA 
1-

1$: 
2$1 
3$1 

4$: 

5$: 

6$: 

100S: 

200.: 

150.: 

HOII 
TS18 
HOII 

HDII 
MOil 
CLR 
TSTB 
BMI 
SOB 
BR 
MOlle 
CLR 
TST9 
BMI 
SOB 
BR 
CMPB 
BNE 
TSTB 
BHE 
DEC 
BEQ 
ADD 
BR 

INC 
CALL 
.WORD 
BR 
CALL 
.WORD 
RETURN 

tRCSR1,R1 
2(Rll 
t6.4(Rll 

te. ,R2 
tPATERN,R3 
R5 
4(Rll 
4. 
R5,3. 
100. 
(R3) ,6(Rll 
R5 
(Rll 
6' 
R5,S. 
100$ 
2(R1) r<R3) 
100' 
(R3lf 
2. 
R2 
200S 
tl0,4(Rll 
1$ 

ERROR 
PRINT 
SLUE 
150. 
PRINT 
SL600D 

Point to the address 
Flush the contents of RBUF 
Set the SLU for a.intenanee and 
pro.rae.able baud rates 
Initialize the baud rate counter 
Point to the test patterns 
Initialize tie. out counter 
Loop the pattern around 
Branch if read~ to send 
If not read~, bu.p ti.e out counter 
IF tiaed out then - ERROR -
Send the infor •• tion out 
Initialize the ti.e out counter 
Is the receiver readv 1 
Ves it is and branch 
If not read~, bump tia. out counter 
If tiaed out then -ERROR-
Was the infor.ation sent OK ? 
No it was not -ERROR-
All of the test paterns done 1 
No, gO do another pattern 
All of the baud rates tested 1 
Yes, get out of this routine 
No, set-up the next baud rate 
Do another loop, reinit patterns 

Bu.p the error counter 
Print the error .essaSe 

00 back 
The test was successful 

PAT ERN : • BYTE 
.EIIEN 

177,40,0 Test patterns for SLU 

.DSABL LSB 

.END 

Figure C-7 SLU Diagnostic Task 

RAMTST: I 

.ENABL 

.OLOBL 

.PSECT 

LC,LSB 
RAHBON,PRINT,RAHTOP,HESRA1,RAOOOD,ERROR 
ROM 

This routine checks the user RAM on the KXT11-AA 
1-

1$: 

2'$: 

3.: 

HOV 
MOil 
MOil 

HOII 
CHP 
BEQ 
CALL 
.WORD 
INC 
BR 
TST 
CHP 
BLO 
CALL 
.WORD 

HOII 
HDII 
RETURN 

(SPhR2 
ERROR,R3 
tRAMBGN,RO 

RO,(RO) 
RO, (RO) 
2' 
PRINT 
MEBRAl 
R3 
3$ 
(ROlf 
RO,tRAHTOP+2 
It 
PRINT 
RAGOOD 

R2, (SP) 
R3,ERROR 

.DSA8L LSB 

.END 

Save the return address 
Save the ~ontents of the ERROR f\a. 
Point to the start of the user RAH 

Write the address 
Read it back 
Was the value read correctly 
No, report the failure, 

set the error fla!!, 
and !!o back 
Go onto the next location 
Until there is no _ore to test 

Indicate RAH test success 

Restore the return address 
Restore the ERROR fla!! 
Test co.pleted. 

Figure C-8 RAM Diagnostic Task 

C-I0 



1 
2 
3 000000 
4 
5 000000 
6 
7 
8 
9 

10 
11 000000 
12 000004 
13 000006 
14 000010 
15 000014 
16 000016 
17 000022 
18 000024 
19 000030 
20 000032 
21 000036 
22 000040 
23 000044 
24 000046 
25 
26 
27 

2 
3 000000 
4 
5 000000 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

000000 
000004 
000006 

000012 

000014 
000016 
000022 

000024 

012700 OOOOOOG 
005001 
062001 
022700 000002G 
001374 
022701 OOOOOOG 
001406 
004767 OOOOOOG 
OOOOOOG 
005267 OOOOOOG 
000403 
004767 OOOOOOG 
OOOOOOG 
000207 

000001 

012701 000003 
005000 
005760 0000006 

005720 

077104 ' 
004767 0000006 
0000006 

000207 

000001 

.ENA8L LC,LS8 

.GLOBL REC,LAST,CSUH,PRINT,HESR01,ROGOOD,ERROR 

.PSECT ROH 

ROHTST: : 
H 

This routine will check the ROH on the KXT11-AA, this test checks 
the portion of the ROM that contains the actual controI/.anitor tasks 

;-

MOV tREC,RO Point to the control task address 
CLR Rl Initialize checksu. value 

1$: ADD CROl+,Rl Update value 
CliP tLAST+2,RO Until there are no values to SUII 

8NE 1$ If there are still so_e _0 .et the .. 
CHI" tCSUH,Rl Are the checksu.s eGual 1 
BEQ 2$ ; Yes, leave the test 
CALL PRINT No, report the 
.WORD MESROl failure 
INC ERROR Set the error fla. 
BR 3$ Leave the test 

2$: CALL PRINT Report the test passed 
.WORD ROGOOD 

3$: RETURN 

.DSABL LSB 

.END 

Figure C-9 ROM Diagnostic Task 

.ENABL LC,LS8 

.GL08L PPA,PRINT,P600D 

.PSECT ROM 

PIOTST:: 

;-

1$: 

This routine checks the parallel ports on the KXT11-AA this only 
test the ability to address the port 

MOV t3,Rl Initialize loop cDunter 
CLR RO Initialize countin~ index 
TST PPACRO) Atte.pt to address PIO port if the 

atte",pt fails a trap throu!ih the 
restart will occur and report a run 
tiae error 

TST (ROl+ Increment the index, this will not 
ti .. e out since there is _eIDor,=, at 
locations 2-4 

SOB Rl,l$ Do the port 
CALL PRINT Indicate success 
.WORD P600D 

RETURN 

.DSABL LSB 

.END 

Figure C-1O Parallel I/O Diagnostic Task 

C.4.3 Control Task Programs 
The control task programs (see Figure C-ll) complete the initialization of the system by clearing the 
receive buffer, enabling the interrupts, and lowering the microprocessor priority to accept interrupts. 
The operator is then informed that the system is running and waiting for interrupts. The TIMER re­
ceives a BEVNT input sixty times per second. The REC program is entered when an interrupt is re­
ceived from the console. The program will then turn on the LED and load theW s counter. The 
BREAK program is entered when a BREAK is detected and performs the same task as REC. A 
TIMER program will decrement the 10 s counter, if it is enabled, every time BEVNT is received. 
When the 10 s counter is decremented to zero, the program will turn off the LED. If the LED is turned 
on and another BREAK or interrupt occurs, the 10 s counter is reset for 10 s.'The program also allows 
any exception conditions. 

C-ll 



1 
2 
3 
4 
5 000000 
6 
7 000000 
8 
9 

10 
11 
12 
13 000000 
14 000006 
15 000014 
16 000020 
17 
18 000022 
19 
20 
21 
22 
23 
24 
25 000022 
26 000026 
27 000030 
28 000034 
29 000036 
30 000044 
31 
32 000046 
33 
34 
35 
36 
37 
38 000046 
39 000054 
40 000062 
41 
42 

012767 
012737 
105737 
000002 

005767 
001406 
005367 
001003 
012737 
000002 

012767 
012737 
000002 

000001 

001130 OOOOOOG 
OOOOOOG OOOOOOG 
0000020 

OOOOOOG 

OOOOOOG 

OOOOOOG OOOOOOG 

001130 OOOOOOG 
OOOOOOG OOOOOOG 

C.4.4 Exception Programs 

.SBTTL CONTROL AND MONITORING TASKS 

.ENABL LC 

.GLOBL TIHE,LEDON,PCW,RCSRC,LEDOFF 

.PSECT ROH 

REC: : 
;t 

; This interrupt routine accepts an input from the coosole. When the input is 
; received a ten second counter is initialized and the LED is turned on. 
1-

TIHER:: 
;t 

HOV 
HOV 
TSn 
RTI 

1<10.* 60.),TIHE 
ILEDON,@IPCW 
@tRCSRC+2 

Set timer for ten seconds 
Turn the LED on 
Flush the receive bufter 
Go back 

; This interrupt routine when entered every clock tick will decre.ant the ten 
; second counter and turn off the LED if the time is expired, otherwise it 
; returns i~mediatel~. 
1-

TST 
BEQ 
DEC 
BNE 
HOV 

GOBACK: RTI 

BREAK: : 

TIHE 
GOBACK 
TIHE 
GOBACK 
ILEDOFf,IUPCW 

If the tiae is set update the 
counter otherwise gO back 
Yes. bu~p the counter and if it is 
The last tick then shut the LED off 
Otherwise gO back 

; This interrupt service routine will be entered if a break detected, this 
; is treated as a resular in~ut on the KXT11-AA console ~ortt 
1-

HOV 
HOV 

LAST: : RTI 

.END 

1<10. * 60.),TIHE 
tLEDON,lIlPCW 

Figure C-ll Control Task 

Set the tiaer for ten seconds 
Turn the LED on 
Go back 

The system is now running and the exception programs are entered only when a power fail occurs or a 
bus time-out occurs. The print program is entered only to communicate with the operator. 

A time-out will occur when an address does not respond or if a device does not respond to an interrupt 
acknowledge. When a time-out occurs, the SBC-llj21 will trap to location 4, the restart address. The 
start address is defined as location 0, and restart address is defined as location 4 by the factory con­
figuration. The RSTRT program is entered via location 4; it informs the operator that a run-time error 
has occurred and waits for the operator to interrupt. 

A power failure is detected when the system power is going down. This enables the power fail interrupt 
and causes a trap to location 24. The POWERF program (see Figure C-12) is entered via location 24, 
and the power fail flags are set in the RAM memory. The RAM memory includes the battery backup 
feature of the SBC-llj21 module. Program information contained in the general-purpose registers, the 
stack pointer, and other necessary data are stored in the nonvolatile RAM memory. The program then 
puts the bus into a known state with the RESET instruction and waits for the power loss to occur. When 
power is restored, the POWRUP routine is executed and data is recovered as the system restarts. 

C-12 



2 
3 
4 000000 
5 
6 000000 
7 
8 
9 

10 
11 000000 
12 000006 
13 000014 
14 000016 
15 000020 
16 000022 
li' 000024 
18 000026 
19 000030 
20 000034 
21 
22 000040 
23 000042 
24 
25 000044 
26 
27 
28 
29 
30 
31 000044 
32 000050 
33 000052 
34 
35 
36 

012767 
012767 

010667 

000005 
000777 

004767 
OOOOOOG 
000777 

000001 

123456 
135724 

OOOOOOG 

OOOOOOG 

0000006 
0000006 

POWERFll 
If 

.ENABL 

.GLOBL 

.HCALL 

.PSECT 

LC 
POWER1,POWER2,TIHE,SAVER6,PRINT,FHESS 
PUSH 
ROH 

; This routine is entered when a power fail is detected and saves the 
; pertinent information in non-volatile RAM 
;-

RESTRT 1: 

MOV 
MOV 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
MOV 

RESET 
DR 

1123456, POWER 1 
1135724, POWER2 
RO 
Rl 
R2 
R3 
R4 
R5 
TIHE 
SP,SAVER6 

Initialize the 32-bit power recover~ 
test pattern 
Save the ~eneral purpose reSisters 
and an~ pertinent data in d non­
volatile RAH ar •• 

Save the stack ~ointer in the non­
volatile ra. area 
Put the bus in a known state 
and wait for loss of power 

; When a bus error occurs such as an interrupt ti.e-out or bus ti.e-out 
; a trap thru the restart takes place and co.es here 
;-

CALL 
.WORD 
DR 

.END 

PRINT 
FMESS 

Figure C-12 Power Fail Task 

C-13 

Indicate that a run-ti.e error has 
occurred and wait for operator 
intervention 





APPENDIX D 
MACRO-ODT ROM 

Appendix D provides the user with the program listing of the Macro-DDT ROM firmware. 

D-l 



KXTll-A2 1K FIRM~ARE 
TABLE OF CONTENTS 

MACRO V04.00 ~-UCT-81 22:56:27 

3- 1 
4- 1 
5- 1 
6- 1 
8- 1 
9- 1 

11- 1 
13- 1 
14- 3 
14- 4 
14- 5 
15- 1 
19- 1 
20- 1 
20- 19 
21- 1 
22- 1 
23- 1 
24- 1 
24- 22 
25- 1 
26- 1 
26- 29 
27- 1 
27- 20 
28- 1 
30- 1 
32- 1 
33- 1 
35- 1 
36- 1 
37- 1 
39- 1 
40- 1 
41- 1 
42- 1 
43- 1 
44- 1 
45- 1 
46- 1 
47- 1 
48- 9 
48- 56 
48- 114 
49- 1 
49- 42 
49- 51 
49- 58 
4'1- 92 
50- 1 
51- 1 
51- 23 
52- 1 
52- 29 
52- 37 
53- 1 
53- 24 

COPYRIGHT NOTICE 
KXTll-A2 EDIT HISTORY 
Equates 
General DLART Equates 
General PPI Equates 
Program-specific Equates 
MACRO DEFINITIONS 
RAM Defin1tion 
TRAPS-Trap-handling routines 
T~APS-LTC Trap-killer 
TRAPS-BREAK handler 
RESTART-Introduction 
RESTART-En~ry point 
RESTART-See if stack exists 
REstART-Exit if in IN-ROM state 
RESTART-Cause determination 
RESTART-Ed ts 
POwERUP-Introductio? 
POWE~UP-Turn on LEO, 
POwERUP-Test console OLAkT 
POwERUP-Te5t and set up liD-page RAM 
POWERUP-Turn off LED 
POWERUP-Test for "lOW core" 
POWERUP-Edt 
rO.ERU~-Subroutlne to initialize vectors 
AUTOBAUD-Synchronize with Console 
macroODT-Introductlon 
macroODT-Save status and print prompt 
macroODT-Get ODT command 
macroODT- Go and Proceed 
macroODT-Register and PS command 
macroOOT-Examine and Deposit 
macroODT-Get and echO character 
macroODT-rype ASCII string 
macroODT-Get octal digits 
maCrOODJ-UCTSTR--type binary in RO as ASCII 
macroODT-Output messages 
DIAGNOSTICS-for SLU2 and PPI 
HARDwARE ENTRY POlhT 
DIAGNOSTICS-Continued 
BOOTS-Description 
BOOTS-RX Controller Definitions 
SOOTS-rU58 Definitions and Protocol Equates 
BOOTS-RIll Definitions and Equates 
BOOTS-Program entry point 
-----> HALT AT PC=172234 INDICATES "Illegal device name" -----> HALT AT PC=172264 INDICATES "Illegal unit number" -----> HALT AT PC=172304 INDICATES "No low memory, can"t boot" -----> HALT AT PC=172316 INDICATES "unexpected timeout during boot" 
BOOTS-RX01/RX02 Bootstrap 
BOOTS-Distinguishing type of boot block -----> HALT AT PC=172454 lNDICATES "No boot DloCk on volume" 
BOOTS-TU58 Bootstrap -----> HALT AT PC=172542 INDICATES "TUS8 initialization error" -----> HALT AT PC=172562 INDICATES "TUSS blOCk 0 read error" 
BOOTS-Stand-alone volume bootstrap -.---> HALT AT PC=172614 INDICATES "Directory read error" 



KXTll-A2 lK FIR~WARE 
TAB~E OF CONTENT~ 

MACRO V04.00 5-0CT-ijl 22:56:27 

53- 36 
54- 1 
54- iI 
54- 12 
55- 1 
56- 1 
57- 1 
57- 36 
57- 114 
60- 1 
61- 27 
61- 37 
63- 1 

-----> HALT AT PC=172652 INDICATES "flle not tound" 
BOOTs-Load Stand-Alone ~roQram flle 
-----> HALT AT PC;172732 INDICATES 'Stand-alone flle read error" 
-----> HALT AT PC=172750 INDICATES "Illegal transfer address" 
173000G ENTRY POINT 
BOOTS-Contlnued 
BOOTS-RXOI/RX02 Read routlnes 
-----> HALT AT PC=173070 IhDICAIES "Floppy drlve not ready" 
-----> hALT AT PC=1732b2 INDICATES "Floppy read error" 
BOOTS-TU58 Read routlnes 
-----> HALT Ai PC=17355b INDICATES "TU58 ~ND packet misslng" 
-----> HALT AT PC=17~610 INDICAT~S "TUS8 Checksum error" 
END STATEMENT 



KXT11-A2 1K FIRMWARE 

1 
2 
3 
4 
5 
6 000000 
7 
8 173776 
9 173777 

173776 
000 
001 

MACRO V04.00 5-0CT-~1 22:56:27 PAGE 2 

.TITLE KXT11-A2 lK FIRMWARE 

.IDENT IV1.001 

.ENABL LC 

; Place identification number in last ROM location: 
• ASI:.CT 
.=173776 
.!lYTE 0 
.BYTt. 1. 



U 
I 

~ 

KXT11-A2 1K FIRMWAR~ 
COPY~I~HT NOTICE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

MACRO V04.00 5-0CT-81 22:56:27 PAGE 3 

.SBTTL COPYRIGHT NOTICE 

COPYRIGHT (Cl 1980, 1981 BY 
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. 

tHIS SOFTWARE IS FURNISHIO UNDIR A LICENSE AND MAY BE USED AND COPIED 
ONLW IN ACCORDANC~ wITH Tk~ TERMS OF SUCH LICENSE AND WITk THE 
INCLUSION OF TkE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTH~R 
COPIES tHEREOF MAt hOT ~E PROVIDED OR OTHERwlS~ MAD~ AVAILABLE TO AkY 
OTHEH PERSON. NO TIlLE TO AND OriNERSHIP Of THI SOFTWARE IS HEREBY 
TRANSfERRED. 

THE INFORMATION IN IHIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE 
AND SHOULD NOT BE CONSfRUED AS A COMMITMEN~ BY DIGITAL EQUIPMENT 
CORPORATION. 

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY or ITS 
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. 

VERSION Vl.OO 

EL 29-SEP-81 



o 
I 
~ 

KXTll-A2 lK fIRMwARE 
KXT11-A2 ~DIT HISTORY 

1 
2 
3 
4 

MACRO V04.00 5-0CT-81 22:56:27 PAGE 4 

.SBTTL KXTll-A2 EDIT HISTORY 

;EDIf HISTORY: 



KXTll-A2 lK FIRMWARE MACRO V04.00 5-0CT-ill 22:56:27 PAGE S 
EQUATES 

1 .SBTTL Equates 
2 
3 ; BlT EQUATES 
4 
5 000001 BlTO = 1 
6 000002 BIT1 = 2 
7 000004 BIT2 '"' 4 
a 000010 BIT3 = 10 
9 000020 aa4 = 20 

10 000040 BITS = 40 
11 000100 BlT6 = 100 
12 000200 BlT7 = 200 
13 000400 tilT a = 400 
14 001000 BIT!i = 1000 
1:> 002000 BIT10 = 2000 
16 004000 Bl111 = 400\1 
17 0100\10 Bl'I'12 = 10000 
18 020000 BIT13 = 20000 
19 040000 BIT14 = 40000 
20 luOOOO !lIT15 = 1011000 
21 
22 ; ASCII CHARACTEP EQUATES 
23 
24 000012 Lf = 12 L1ne feed 
25 000015 CR = 1:> Cdrr1age return 
26 000040 SPACE = 40 Space 

0 27 
I 

-J 



KXTll-A2 lK FIRMWARE MACRO V04.00 5-0CT-81 22156:27 PAGE 6 
GENERA~ OLART EQUATES 

1 .SBTTL General OLART Equates 
2 
3 ; OLAR'l EQUATES 
4 
5 177560 RCSR$1 = 177560 ;SLU1 Receive CSR 
6 177562 RtlUf$l = 177562 ;SLUl Receive buffer 
7 117504 XCSR$1 = 177564 ;SLU1 Xmlt CSR 
8 177566 XBUF$1 = 177560 ;SLU1 Xmlt bufter 
9 176540 RCSR$2 = 176540 ;SLU2 Receive CSR 

10 176542 RliUf'S2 = 170542 ;SLU2 Receive butter 
11 176544 XCSRS;'! = 176544 ;SLU2 Xmit CSR 
12 176546 XBUF&2 = 1"1654& ;SLU2 Xmit bufter 
13 
14 ; OLART RECEIVE CSR BITS 
15 
16 004000 HC.ACT = BITll ;Receiver active (RIO). Set 
17 ; while character 15 being 
18 ; received. 
19 OOf/200 RC.DUN = BIT7 ;Recelver done (RIO). A 
20 ; character has been completely 
21 received and now resides 
22 ; in RBUF. 
23 000100 RC.IEN = IHT6 ;Receiver into enable (R/w). 
24 When set, enables -keyboard" 
25 interrupts, using vector 
26 at 60. 

t:! 27 
I 28 ; OLART RECEIVE BUFFER BITS (RIO) 

00 29 
30 100000 RB.ERR = BIT15 ;Error. Framing error or 
31 ; overrun has occurred. 
32 040000 RB.OVR = BIT 14 ;Overrun error. Character was 
33 ; received before previous one 
34 ; was read. 
35 020000 RB.FRM = BIT13 ;Framing error. No valid stop 
36 ; bit was detected. 
37 004000 RB.BRK = BITll ;Break detect. Set when break 
38 15 detected, reset when next 
39 start b1t arrives. 



KXTII-A2 lK FIRMWARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 7 
GENERAL OLART EQUATES 

1 ; OLAI<T TRANSMIT CSR BITS 
2 
3 000200 XC.ROY = BIT7 
4 
5 
6 
1 
8 000100 XC .lEN = B11'6 
9 

10 
11 
12 
13 , Programma~le ~aud rate ~1ts 
14 
15 000010 PBRO = BIT3 
16 000020 PBRI = BIf4 
17 000040 PBil2 = BITS 
18 
19 ; PBRO-2 set ~aud rates as follows: 
20 
21 000000 BO.003 .. 0 
22 000010 BO.OOb = PBRO 
23 000020 BO.012 = I'BiH 
24 000030 BO.02 .. .. PBR1!PBRO 
25 000040 BO.048 = PBR2 
26 000050 1:10.096 = PBR2 PBRO 

0 27 000060 BO.192 = PBR2 Pl:IRl 
I 28 000070 BO.384 = PBR2 PBR1!PBRO 

1.0 29 
30 000004 XC.MNT = B1T2 
31 
32 
33 
34 
35 
36 000002 XC.PBE = bITl 
37 
38 
39 
40 
41 
42 
4J 000001 XC.BRK = bITO 
44 
45 

;Transm1tter ready (RIO). 
When set, Ind1cates that the 
last character was completely 
sent and XBUF Is ready for 

; a new one. 
;Transmlt into enable (R/W). 
,When set, enables "console 

printer" interrupts, using 
vector at 64. 

;Baud rate = 300 
;Baud rate = 600 
;Baud rate = 1200 
;Baud rate = 2400 
;Baud rate = 4800 
;Baud rate = 9600 
;Baud rate = 19200 
;Baud rate = 38400 

;Ma1ntenance (R/W). when set, 
creates an 1nternal "loop­

baCK" between the transmitter 
and rece1ver. Also dis­

connects tne external 
lier1al 1nput. 

;Frog. baud rate enable. wnen 
set, the baud rate i5 deter­

m1ned by bits 3-5 as 
taDulated above. WHEN 

eLgAR, BAUD RATE IS OEtEk­
MINEU Br VOLTAGES AP~LIEO 

; TO OLART IC PINS. 
;Transmit breaK (R/W). When 

set, serial output 15 a 
cont1nuous BREAK. 



9 -o 

KXT11-A2 1K FIRMWARE 
GENERAL PPI EQUATES 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
is 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21. 
28 
29 
30 
31 
32 
3l 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
4S 

176206 
176200 
176202 
176204 

000200 

000100 
000040 

000020 

000010 

000004 

000002 

000001 

000016 
000014 
000012 
000010 
000006 
000004 
000002 
000000 

000001 
000000 

MACRO V04.00 5-0CT-81 22:56127 PAGE B 

.SBTTL General PPI Equates 

1 PROGRAMMABLE PERIPHERAL INTERFACE (PPI) EQUATES 

PP.CWR = 
PP.A = 
PP.B = 
PP.c = 

176206 
176200 
176202 
176204 

PPI MODE-SETTING BITS 

;PPI Control Word Register 
IPPI Port A Register 
;PPI Port Ii Register 
;PPI Port C Register 

KXT11-AA board configuration does not permit all combinations of 
tne mode bits. Consult tne manual before using tne PPI. 

PP.MOD = 

PP.MD2 = 
PP.MDA = 

PP.DRA = 

PP.CHI = 

PP.MDB = 

PP.DRB = 
PP.CLO = 

BIT7 

BIT6 
IIIT5 

BIT4 

BIT3 

BIT2 

BITl 

BITO 

PPI BIT SET/RESET CONTROL BITS 

;Tnis MUST be or'd witn otner 
; bits to set mode. 
;Sets mode 2 
;It bit 6 is low, dete~mines 
; mode of port A 
; (ni=mode 1, la-mode 0) 
;Directlon Of port A. 
; Hi=IN, 10=OUT. 
;Dlrectlon of port C upper nalt 
; Hl=IN, 10=OUT. 
;Mode of port B. 
; Hl=mode 1, lo=mode o. 
;Directlon of port B. 
; Hl=IN, 10=OUT. 
;Dlrectlon of port C lower naIf 
; Hl=IN, 10=OUT. 

when blt 7 ls low, writlng to the PPI CSR wl11 set or reset 
ind1v1dual blts 1n Port C, depending on the mode and dlrectlon 
of tne port's blts, and on tne comblnation of bits you wrlte. 

PP.BI7 = 
PP.bI6 = 
PP.BI5 = 
PP.BI4 = 
t'P.BI3 = 
PP.BI2 = 
PP.BI1 = 
PP.8IO = 

PP.BIS = 
PP.BIC = 

BIT3!BIT21BITl 
BIT31BIT2 
BIT3!BIT1 
BIT3 
B1'1'2! BITi 
BITi 
BITl 
o 

BITO 
o 

fUse ONE 
;of tnese 
Ito select 
;wnicn bit 
;i& desired 
Ito be 
;SET or 
;CLEARed 

;SET specified bit. 
;CLEAR speclfied b1t. 



tI 
I ..... 

KXT11-A2 1K FIRMWARE MACRO V04.00 5-0CT-81 22:56:21 PAGE 9 
PROGRAM-SPECIFIC EQUATES 

1 
2 
3 
4 
5 
6 
7 
8 
9 

.SBTTL program-spec1f1c Equates 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

000221 

000017 

000032 

000072 

160010 
167776 

000300 
000340 

000200 

000020 

, EQUATES USED TO TURN LED ON AND OFF 

MODE = PP.MODIPP.DRA1PP.CLO 

LEDOH = PP.BIS1PP.BI7 

, EQUATES USED TO SET UP OLARTS 

BAUDR$ = BD.0241XC.PBE 

TUBAUD = BD.3841XC.PBE 

; MEMORY CONFIGURATION EQUATES 

RAM BOT .. 160010 
RAMTOP .. 167716 

, SOFTWARE FLAGS AND MASKS 

PRl6 = 300 
t'RI7 = 340 

, USED tlY ODT MODUI"E 

RFLAG = BIT7 

T.BIT = BIT4 

;Port A = Mode 0 IN 
;Port B = Mode 0 OUT 
;Port C upper nibble = OUT 
;Port Clower n1bble = IN 

,Set PC7 

;In1tlal console baud rate to 
; be 2400, w1th prog. baud 
, rates enabled. 

;TU5S Baud rate = 38,400 

;Bottom address of RAM 
;Top address of RAM 

IPS for priority of 6 
IPS for pr1or1ty of 7 

Reg1ster flag b1t- Ind1cates 
reg1ster 1s being exam1ned 

Trace b1t 1n PSW 



KXTII-A2 lK fIRMWARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 10 
PROGRAM-SPECIFIC EQUATES 

1 ; RESTART TYPE WORD BITS 
2 
3 100000 R.HALT = BIT15 ;HALT or BREAK occurred 
4 000200 R.NXM = BIT7 IAccessed non-existent memory 
5 000001 R.STAK = BITO ;Double-bus error 
6 
7 ; BOUT CONTROL IOORD BITS 
8 
9 100000 NO.LOw = BIT15 ;NO memory found at 000000-

10 ; do not boot 
11 000200 DEVBIT = BIT7 ;1 = RX01/02 floppy 
12 ;0 = TU58 cassette 
13 000001 DEVNUM :: BITO ;Unit no. (0 or 1) 

14 
15 ; DIAGNOSTIC MESSAGES 
16 
17 000100 E.nT :: 100 ;SLU2 loopback test tailed 
18 000010 1:..1111 T = 10 ;SLU2 internal loopback failed 
19 000001 E.PAk = 1 I Parallel port loopback failed 

ttl 
N 



9 
w 

KXTll-A2 lK FIRMWARE 
MACRO DEfINITIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

MACRO V04.00 5-0Cl-81 22:56:27 PAGE 11 

.SSTTL MACRU DEfINITIONS 

MACRO DEfINITIONS 

Th1s macro will 1nsert ABORTS into the code which will halt the 
program, exit to ODT with the PC printed on the console, and generate 
an entry in the table of contents which descr1bes tne error condition. 

;-

.MACRO ABORT T~XT 
HALT 

.IRP PCS,\. 
• SB'ITL -----> HALT Al PC='PC$ INDICATES ·'TEXT" 
.ENDR 

BR .-2 
• Et.IlM 



KXT11-A2 1K FIRMwARE 
MACRO DEFINITIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
2& 
27 
28 
29 

MACRO V04.00 5-0CT-81 22:5&:27 PAGE 12 

:+ 

; 

DELAY A,B,N 
where A and B are names of reg1sters that are free (both ~ill 
be clear wnen through) and N is an integer. 

Tnis macro produces a delay whose duration (when running in KXT11-AA 
ROM) 1s .2399N seconds. 
When N<4, it is more efficient to use the following code: 

The 

CLR 
SOB 
(SOB 
(SOB 

macro 

MOV 

Rn 
Rn, • 
Rn, • 
Rn, • 

generates 

IN,Ra 

code like tile following: 

2W 

2.44 
239861.7& 
239861.76] 
239861.7&] 

3.6& 
,n&: CLR Rb 1W N*2.44 

SOB Rb, • 1W &5536N*3.66 
SOB Ra,nS 1w N*3.66 

;-

."'ACRO DELAY A,B,N,1L 
MOV 'N,A 

L: CLR B 
SOB B,. 
SOB A,L 
.END", 



KXTll-A2 1K f'IRM~ARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 13 
RAM DEFINITION 

1 .SSTH RAM Definition 
2 
j ; SCRATCH RAM AREA 
4 
5 167776 TRAP4 -- 167776 ;Enables trap-to-4 emulation 
6 ; when non-zero 
7 167774 OOTOHY == 167774 ;User-readable copy of R.TYPE. 
8 ; Restart cause. See R.TYPE 
9 table in RESTART routlne. 

10 167772 O.CNIL -- 1&7772 lOOT Control word. Set Bit 15 
11 to disable T-Sit tilter, set 
12 !lit 7 to disable Pr lor ity 7 
13 filter. 
14 167770 B.CNIL -- 167770 ;Boot control word. 
15 16770& fI.PC -- 1677&6 ;Where restart saves top of stack 
16 167764 IN.USR == 1&7764 ;t:nables user-caused restart 
17 ; and BREAK when non-zero 
19 1677b2 R.Tnl:. == 1617b2 ;Restart cause. See table in 
19 ; RESTART routine. 
20 167760 USERSP -- 167760 ;Used by ODT to store the user's 
21 ; stack pointer. 
22 167756 RPUINT == 167"/56 ;Used oy 001' to point to the image 
23 ; of user's RO In its stack. 
24 167754 SAVPS -- 167754 ;Store halted PS here for OUT 
25 167752 SAVPC -- 1&7752 ;Store halted PC here for ODT 
26 167750 OOTFLG -- 1&7750 ;Used by DDT for internal f189s. 

0 27 167746 OOTLOC == 16774& ;Useo by ODT to polnt to location 
I 28 ; currently open. 

Ul 29 167744 ODTSTK -- 167744 ;Sottoru of DDT's stack 
30 167644 SS'IACr. == 00'fSTr.-100 ;Bottom of default user stack 



o 
I ..... 

0\ 

KXT11-A2 1K FIRMWARE 
RAM DEFlNITION 

MACRO V04.00 5-0CT-81 22:56:27 PAGE 14 

1 170000 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 170000 
17 1700UO 005767 177760 
18 170004 001001 
19 
20 170006 
21 170006 000002 
22 
23 
24 
25 
26 
27 
28 
29 
30 
11 
32 

170010 
170010 
170014 
1700:tO 

170026 
170032 

012667 
012667 
012767 

005067 
000167 

177736 
177734 
100000 

177732 
000544 

177734 

.=170000 

.SBTTL TRAPS-Trap-handling routines 

.SBTTL lRAPS-LTC Trap-k1ller 

.SBTTL TRAPS-BREAK handler 

;"";";;;;,;;;;";;;;,;,;;;;";,;;;,;,;,;,,,,,;,,,,, ;i 
;;I;I;;;;;';;;;;;;;;;;;;I;;';;;;;;;I;;;;;;;;I;;;;~;;;; ;; 
; ; ;; 

n; 
; , ; 
; ; ; 
i;' 
; , ; 

; ; ;; BREAK-HANDLING ROUTINE 
, , , , AND LINE TI~E CLOCK INTERRUPT KILLER 
; I ; ; 
";;;;;;;;;,;;,,,,:"";",;,;;;;;;;;;,;;;;;;,,;;;,,,;Ii 
;;;;;;;,;;';;;',;;';;1;;;;;;;;;,,;,;;;,;;;,;;;;;;;,,;;;; 

II; 
;n 

$$$BRK:: 

$$$LTC:: 

BRKNOO:: 

TST 
BNE 

RTI 

MOV 
MOV 
MOV 

CLR 
JMP 

IN.USR 
BRKNUO 

(SPH,SAVPC 
(SPH,SAVPS 
IR.HALT,R.UPE 

IN.USK 
DOT 

;Are we in user mOde? 
;YES-Go to DDT 

NO-Go oack to ROM program. 
BREAKS are ignored oy ODT, 

REStART, POWERUP and the 
DIAGNOSTICS. The BOOTS 

can be interrupted, though. 

Save context 
for DDT. 
Causes PC to be printed 

upon entry to DDT. 
Get out of user mode 



t:i 
I ---..J 

KXT11-A2 1K FIRMWARE 
RESTART-INTRODUCTION 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

MACRO V04.00 5-0CT-81 22:56:27 PAGE 15 

.SBTTL RESTART-Introduction 

;;1:;;;;;;;:;;;;;;:;:;;;;;;;;;;;;;;1;;;;;;;;:;;;;;;;;;iii;;; 
;;;;;;;;;i:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; 
; ; ; ; 
i i ; ; 
; ; I ; 

RESTART MODULE 
; ; ; ; 
; ; ; : 
; ; ; ; 

il;;i;;;;:;;;;;;;;;;;I;;;;;;;;;;:;;;;;;;;;;:;;;;;:;;;;iii;;; 
;;;;;:;;;;;;;;;;;;;;;;;;;;:;;:;:;;;;;:;;;;;;:,;;;;;:;; ii;;:; 

;i­
; 
;The purpose of the RESTART routine Is to restore the fALCO~ to a 
;Known state following those except10ns which cause a RESTART hardware 
;actlon. This action consists ot stacking the current PSW and program 
;counter, then setting the Psw to 340 and jumping to the hardwired 
;RESTAMT location. Ihis location is at the address STARTi-4 where 
;START is jumper selectable as 000000, 010000, 020000, 040000, 100000, 
;140000, 172000 or 173000 (all in octal). This program is deSigned 
;tor a START location ot 172000, thus RESTARTs jump to 172004. 
; 
;There are several different ways in which RESTART performs its 
;function, depending on the value of IN.USR, TRA~4, the contents 
lot the location the SP pOints to, and one bit (R.STAK) in R.TYPE. 

;R.TYPE, the restart type word, is RESTART's output to DDT. 

;-

; i­
; 
;The goal is to maximize PDP-11 software compatibility and to provide 
;useful debugging information to the program developer. 

;-



9 ..... 
00 

KXT11-A2 1K FIRMwARE 
RESTART-INTRODuCTION 

1 
2 
3 
4 
5 
6 
7 
9 
9 

10 
11 
12 
13 
14 
15 
16 
17 
19 
19 
20 
21 
22 
23 
24 
25 
26 
27 
29 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
49 
49 
50 
51 
52 
53 
54 
55 
56 
57 

MACRO V04.00 5-0CT-ijl 22:56:27 PAG~ 16 

I R.$TRT I Enter v1a hardware mechan1sm, 
w1th (PS)=340 

Is the staCk 
flail set? 
N Y 

i Set R.NXM I 
I Set IN-ROM mode I 
I Go to ODT I 

Set stacie D1t 
Read top of stack 

Cheek 1f too close to "hole" 
Clear stack bit 

Did restart occur 
1n user mOcie? 

N Y 

I 

----------------- I I Is top of 1<------"'-----
I staCk 0000001 I I 
I Ii Y I i 

----------------- . 
• 

--------------- 1 Pop stack 1<-"'-----
frame and 1 1 
return •• 

--------------- I 

I 
I<---Could time out and cause the 
.<-----exit to ODT shown above 
I 

A BREAK does this when 
there's no memory in 
the vector area. 

Only a BR~AK whlle 1n ODT can 
get us here, so the RTI takes 
us back to DDT. 

• Set carry I 
1 1n pusned PS I 
• and return • 

I Leave user mocie • 

I Is top ot • 
1 stack OOOOOO? I 

A BREAK does thls--->, Y N 1 
when there's no -----------------memory 1n the • 
vector area ---------------- I 

Pop staCie 1<---"'------Th1s entry polnt is 1n 
trame ~nd go lithe TRAPS module. It Is 
to BREAK's 1 I where a BREAK 1n user mode 

SAVE CONTEXT' I goes when there IS memory 
entry poInt I • 1n the vector area. 

---------------- . 
• 



t:l 
I -\0 

KXT11-A2 1K FIRMWARE 
RESTART-INTRODUCTION 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

MACRO V04.00 5-0CT-81 22:56:27 PAGE 17 

COULO---->, 
TIME----->, 
OUT------>, 

Pop stacK frame 
if 172004 on top. 
Get pushed PC. 
Set UP ODT's PC 

and PS locations. 

Test word prior 
to where pushed 

PC points 

was tne word 
a HALT 

or did PC-->NXM? 
Y N 

, Set HALT flag , 
I Go to DDT 

Is trap-to-4 
emulation 

enaDled? 
N Y 

, Set NXM flag I 
I Go to ODT , 

Set user mode 
Push "6, 814 

onto stacI< 
and RTI 



'=' I 

N o 

KXT11-A2 1K FIRMWARE 
R~START-INTROOUCTION 

1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 
12 
13 
14 
15 
16 
11 
18 
19 
20 
21 
22 
23 2. 
25 
2& 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
31 
38 
39 
40 
41 

MACRO V04.00 5-0CT-81 22:56:27 PAGE 18 

:+ 

:Exception-twpe word (R.TYP~) is passed to OOT and 15 RESTARTs "best Quess" 
:as to why a restart happened: 

Note: A user-readable copy of this word is at OOTWHY. 
; 

;1------1-----1--------;1 EXIT 1 BIT 1 NAM~ 

:1------1-----1-------­------1 
DDT I 15 R.HALT 

1 
1 
I ------1 

OOT 1 14 
0" 1 13 
TkAP 1 12 
TO 1 11 
."OUR 1 10 

1 9 
1 8 
1 7 R.NXM 
1 

: I b 
:I 1 5 
; 1 1 4 I 
,. 1 3 1 
; 1 1 2 I. 
: 1 1 1 1 
:1------1-----1--------
:IODT 1 0 1 R.STAK 
; 1 1 1 
; 1 1 1 
; 1 1 
11 1 
1 1 1 1 

:1------1-----1--------
;-

CAUSE 

HALT instruction in user code-RESTART POPS SlACK. 
~ote-BREAK also sets tnis bit (see the TRAPS 
module). DOT uses this bit for PDP-11 UDT 
~ompat1bll1ty. 

Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Timeout during user access ot non-existant 

memory 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 

Indicates that a timeout was caused by RESTART 
itself accessing non-existant memory. Tnis 
occurs in conjunction with testing for 
validity of tne stack pointer. 
in PDP-II parlance, th!s is a 
"double-bus error" 



9 
N ...... 

KXT11-A2 1K rIRM~ARE 
RESTART-ENTRY POINT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 170036 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
:.l4 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

170036 
170042 
170044 

170052 
1700~6 

005767 
001406 
0~2767 

005067 
000476 

MACRO V04.00 5-0CT-81 ~~:56:27 PAG~ 19 

177nO 

000200 177710 

1777010 

.SBTTL RESTART-Entry point 

ili;;i;I;II;;;;;;;;;;;;;;;I;;;;;;;;;;;;;;;;;;;I;;;;;;1iii;;; 
iiliiI111;;;;;I,;;;;;;;I;;;II,;;;111;;;;;;;;;';;;;II;;iii;;; 
; ; ; ; 
; ; ; ; 
; ; ; ; 

RESTART ENTRY POINT 
; ; ; ; 
; ; ; ; 
1; ; ; 

;;; I;;;;;;;;;;;; i-I;; jl I;;;;;;;;;;;;;;;;;;;;; II;;;;;;;;;;;;;; 
;;i;;i;;;;;;;;;;;;;1111;;;,;;;;;;;;:I;;;;;I;;;;;;;;;I;ij;;;; 

R.$TRt: I 

;;;i;;;;;;;;I;;;;;;;;;1;11;1;;;;;;I;;;;;;;;;;;;;;;;;;; I;;;;; 
i;;;;;;1111;1;;;I;;;;;;;;1111;;;;;;;;;;;;;;;;;III,;;11iii;;; 
"" ii;; 

"" ; ; ; ; 

"" ; ; ; ; 
; ; ; ; 
; ; ; ; 

IF THE RESTART ROUTINE CAUSED THE REStARt 
GU r~ UDt AND PRINT "r" 

THIS EXCEPTION CAN BE CAUSED BY RESTART'S 
STACK MANIPULATIONS 

; ; ; ; 
; ; ; ; 

"" ; ; ; ; 
; ; ; ; .... , , , , 

;;; Ii;;;;;;;;;; Ii;;;;;;;,;,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;;:1:;;::;;;::;;;;;;;;;;;;;;:;;;;;;;;;;;;;;;:;;;;;;;;;:;:;; 

R.TYPE will have been cleared prior to entering 
any ODT command. So, if tne stack bit is set, only R~START 
itself could nave caused tne trap. Since the stack 15 always 
valid in in-kOM mode, bad stack means we are in in-USER mode. 

;State: X=don't care, U=user, R=in-ROM----
I 

TSI R.Ti'i'l XIDid the stack test fall? 
BEw 1$ XINO- gO to next test 
BIS 'k.NXM,I<.TYP~ UIYES- set R.NXM 

U I this forces "1" from OOT 
CLR IN.USR Rlenter in-RuM mode 
BR ij$ Rlgo to ODT 



KXTll-A2 lK FIRMWARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 20 
RESTART-SE~ IF STACK EXISTS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 170060 
12 
13 170066 
14 170070 
15 170072 
16 170076 
17 170100 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 170104 
32 170110 
33 170112 
34 
3~ 170114 
36 170116 
37 170120 
38 
39 170122 
40 
41 170126 
42 

052767 

005716 
000240 
005766 
000240 
005067 

005767 
001007 
005716 

001002 
022626 
000002 

005266 

000002 

000001 

0000U4 

177656 

171654 

000002 

177674 

... " , , , , 
", 
i ; ; 
; ; ; 
; ; ; 

'" 
lSI 

; ; ; 
; ; ; 
; ; ; 
; ; ; 
; ; ; 
; ; ; 
; ; ; 
; ; ; 
; ; I 

2$: 

.SBTTL RESTART-see 1f stack ex1sts 

i;;;;;;;;;;,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;,,;;;;;; ;i; 
i;;;;;;;;;,;;;;;,;;;;;;;;,;;;;;;;;;;;;;;,;;;;;;;;;;; ;i; 

; ; ; 
STACK VALIDITY TEST ... , " 

; ; ; 
iiiii;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;,;;;;;,;;,;;; ii; 
iiiii;;;;;;;;;;;;;;;,;,;;;;;;;;;;;;;;;,;;;;;",;;;;; ii; 

SIS 

TST 
NOP 
TST 
NOP 
CLR 

'R.STAK, R.TYPE 

(SP) 

4(SP) 

R.TYP~ 

;XIIf we t1meout, we want RESTART 
;XI to know we'were d1ddling SP 
;Xlsee 1f stack 15 val1d 
;XI(1n case times out) 
;xlsee if too Close to top of 
,XI val1d memory 
;Xlstack is OK 

.SBTTL RESTART-Exit if in IN-ROM state 

ii;;;;;;;;;;;;;;;;;;;;;;;;;;;,;;;,;;;;;;;;",;,;;;;;;;ii 
i;;;;;;;;;;;;I,;I;;;;;;;;;;;;I;;;;;;;I;;;;;;;;;;;;;;;; ;; 

RETURN WITH CARRY S~T IF IN "IN-ROM" MODE I'"~ .... , , , , 
UR, GO BACK TO ODT IF A BREAK wITH NO LOw MEMORY;;,; 

; ; ; J 
;i;;;;;;;;;;,,;,;,;;;;;;;;;;;;;;;,;;;;;;;;;;;;;,;;;;;;'i 
li;;;;;;;:I:1;1:1;1;I;1:1;;;;;;I;;;;;;;;"";:;;;;;;;; " 

TST 
BNE 
TST 

BNE 
CMP 
RTl 

INC 

RTI 

IN.USR 
3S 
(SP) 

2$ 
(SP)ot-, (SP)-t 

2(SP) 

;XIAre we ~n user mode? 
,UIYEs-go to next test 
;RINO-see if BREAK brought 
;RI us nere 
,RINO-Just a RESTART 
;~IYES-Behave like a BREAK that 
;RI happened with RAM 

RISet carry 1n pu~hed PS 
HI UNLESS ALR~ADY SET 
Rland return to ROM code that 
RI caused timeout 



tJ 
I 
tv 
W 

KXTII-A2 1~ FIRMWARE MACRO V04.00 5-0CT-b1 22:56:27 PAGE 21 
RESTART-CAUSE DETERMINATION 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 170130 
12 
13 170134 
14 
15 170136 
16 170140 
17 170142 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 170146 
211 170152 
29 170154 
30 
31 
32 
33 
34 
3!i 170156 
36 170162 
37 170166 
38 
39 170172 
40 
41 170200 
42 
43 170204 
44 
45 170206 
46 170210 
47 170216 
48 170220 
49 

005067 

005716 

001003 
022b26 
000167 

021627 
001001 
022626 

012667 
011667 
014667 

162767 

005777 

000240 

001005 
052767 
022626 
000415 

177630 

177642 

172004 

177604 
177566 
177560 

000002 

177562 

100000 

177566 

177544 

.SBTTL RESTART-Cause determ1nat10n 

;1;;1;;1';;;;;;;;;;;;;1;1;;1;;:;;;1;;;;;;;11;;;1;;;1;;Ii;;;; 
;;ilill;;11;;;;II;;;;I;;;;;;;;;;;;;I;;;;;;1;11;1;;;I,;iii;;; 
; ; ; ; 
; ; ; ; 
I; I ; 

DETERMINE HOw USER CAUSED A RESTART 
1; ; ; 
; ; ; ; 
; ; , ; 

;;;;;;;;;;;;;;;;;;;;;;;; Ii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; II;; 
;;;:;;;;;;;;;;;;;;;;;;;;;;;;;111;;;;;;;;;;;;;;;;;;;;;;;i;;;; 

3$: 

4$: 

5$: 

CLR 

TST 

BNE 
CMP 
JIIP 

IN.USH 

(SP) 

4$ 
(SP)+, (SP)+ 
BRIiNUO 

;UIWe were 1n user mode, 
;RI but no longer. 
;RISee if BREAK brought 
;RI us here without low "core". 
;RINO-Just a RESTART 
;RIYES-Sehave like a BREAK that 
;RI nappened while in user prog. 

If the CPU attempts to fetch an instruction from· non-existent 
memory, two traps (the first from execut1ng a HALT, the second 
from timing out) will occur, the result being that second 
trap pushes tne restart address and 340 on the stack. 
This information is useless and gets popped here. 

CMP 
BNE 
CM!' 

(SP),IRI:;STAR 
5$ 
(SP)+, (SP)+ 

;XIGet r1d of double stack1ng 
;Xlcaused b¥ EXECUTIU~ of NXM 
;X I 

Note: Because the contents of the stack is assumed to remain 
unChanged folloNing the first instruction below, it is imperative 
that 1nterrupts be disabled during the next three instrutions. 

MOV 
MOV 
MOV 

SUIl 

TST 

NOP 

Bt<E 
BIS 
CMP 
81< 

(SP)+,R.PC 
(SP),SAVPS 
-(SP),SAVPC 

'2,R.PC 

6$ 
fR.HALT,R.TYPE 
(SP)+, (SP)T 
8$ 

;RIGet pushed PC 
:RluDT would like 
;Rlto see these 

;RISet pointer to last word fetched 
;RI before restart occurred 
;RIIs contents of pushed PC - 2 
;kl a zero (eg a HALT)? 
:RIMake sure next instruction 
;RI won't execute if we time out 
;RINU- it was an NXM 
:RIYES- Flag a HALT, 
:RIPoP tne non-PuP-ll stack frame 
;Rland yo to OOT. 



KXT11-A2 1K FIRMWARE 
RESTART-EXITS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 170222 005767 
12 170226 001407 
13 170230 005167 
14 170234 013746 
15 170240 013746 
16 170244 000002 
17 
18 170246 052767 
19 170254 000167 

MACRO V04.00 5-0CT-81 22:56:27 PAGE 22 

177550 

177530 
000006 
000004 

000200 177506 
000322 

.SBTTL RESTART-ExIts 

i:;;i;;;I;;;;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;:;;i:;:;: 
;:;;:;;;;;;;;1;:;:;;;;;:;;;;;;:;;;;;:;:;:;;;;;;:;:;;;;I;;;;; 
, , , , , , , , 
; ; ; ; EXIT APPROPRIATELY ; ; ; ; 

, , , , ............................................................ , , I , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , " , , , , , , , , , , , , , , , , , , 

:i;;;;;;;;;;;;;;;;;;;;;;;;:;;:;;;;:;;;;;;;;;;;;;:;;:;; I;;;;; 

6S: TST TkAP4 ;RITrap-to-4 emulatIon 
Bt:Q 7$ ;RINO-go to COT 
COM IN.USR ; U IYES-Set user mode 
MOV @'6,-(SP) ;UIEmulate a 
MOV @#4,-(SP) ;Ultrap to 
RTI ;Ultour 

7$: BIS #R.NXM, R.UPE ;Rlflag NXM error 
8S: JMP ODT ;Rlgo to ODT 

enabled? 



KXT11-A2 lK FIRMWARE 
POWERUP-INTRODUCTIO~ 

1 
2 
3 
4 
~ 

6 
1 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

MACRO V04.00 ~-OCT-81 22:56:27 PAGE 23 

.SBTTL POWERUP-Introduction 

;;;1;;;;;';;,; II;;'; 11;;;;;I;i;;;;;;;; II;;;;;;;;;;;;;;;;;;;; 
;; II;; I:;;;;;;;;;; I; I;;; 1:;;;:;;;1;;;;;;;;;;;;;;;; Ii;;;;;;;; 
I;;; Ii;; 
il:; 

"" 
POwER-UP MODULE ; ; ; ; 

I I ; ; 
;i;;;;;;;;;:,;;;;;;;,;;;;;;I;;;;;;:;;;;;;;;:;;;:;;;:;; I;;;;; 
1;;;;;;;;;;,;;;:;;;;;;;:;;:;;;;,;;;:;;:;;;;;;;;";;;;:; I;;;;;; 

This module contains a series of routines which perform 
tests on the on-board RAM and the console DLART. These 
tests are preceded by the lighting Of the LED on the 
KXT11-AA board, and followed by its extinguishing. Should 
the LED fail to either light or go out, there may be a 
defect in the board or its configuration. 

following these tests, the on-board RAM is written with the 
default values of certain control words, and, 1f there is 
memory in the vector region (i.e., near 000000), the BREAK 
and ClOCK vectors are set uP. It not, a bit 1s set in the 
boot control word to disable the bootstraps. 



U 
I 

N 
0\ 

KXT11-A2 1K FIRMWAHE 
POWERUP-TURN ON LEO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 170260 
13 170260 012706 
14 
15 
16 
17 
18 
19 
20 170264 012737 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
3b 
37 
38 
39 
40 

170272 005037 

17n7b v05737 
170302 032737 

170310 001377 
170312 023727 
170320 001377 

MACRO V04.00 5-0CT-81 22:56:27 PAGE 24 

167644 

000221 170206 

1775b4 

177502 
00030U 177500 

177504 000200 

.SBTTL PU~ERUP-furn on LEO 

.... " " " " " " ................................ , ............................ " .. " .......... " ........ " .. " .... " .. ",.,,,"""""""",."""",.",.",.",.,., .. " """ .... " " .................. " " " .... " .... " ............ " " " " " .... " ......... " .. " ............ " " " " .... " .... .. ",",,,,,.,,""""",,,,,"",,,,,",",,",,""",.,,,, 
; ; ; ; ; ; ; ; 
", , TURN ON LEO , , , , 

.. " .... , , , , 
i;;;;;;;; i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; i;;;;;;;;;;;;;;;;;; 
; i-j ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 

PWRSUP:: 
MOV USTACK,SP ;lnitialize stack pointer 

Because a mode-setting command automatically clears all the internal 
registers in the PPI, and clearing Port C Bit 7 turns on the LEO, all 
we have to do is set toe mode, which is port A and 10 naIf of C as 
input, ports B and hi half of C as output. 

MUV ;Set proper PPI mode 

.SBITL POwEKUP-Test console OLART 

;;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; 
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " """""""""""""""""""""",.""""""" ; ; ; ; ; ; ; ; 

CHECK THE CO~SULE DLART , , , , 
, , , , 

ii;;;;;;;;;;;;;;:;;;;;;;;;;;:;;;;;:;;;;;;;;;;;;;;;;;;;ii;;:; 
" " " " " " " " " " " " " " " " " " " . " " " " " " " " " " " , " " " " " " " " " " " " " " " " " " " " " " " " " " " " """"",."""""""""""""""""""""",,,, 

CLR @UCSkS1 ; Disable XMlT interrupts, 
; BRK XMIT, maint. mode 

Set baud rate to default 
TST @#RBUFS1 ;Take out the trash. 
BIT .<RC.IE~!RC.DUN>'@'RCSHS1 

;Should be clear. 
BNE ;If not, drop dead. 
CMP IHXCSRS1, HC.RDY ;Snould be set 
BNE ;It not, rest in peace. 



KXT11-A2 1K FIRMwARE MACRO V04.00 ~-OCT-81 22:~b:~7 PAG~ 2~ 

POWERUP-TEST AND SET UP I/O-PAGE HAM 

1 
2 
) 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 170322 
20 170326 
21 170330 
22 170332 
23 170334 
24 170336 
2~ 170342 

0127011 160010 
010010 
020010 
001377 
005020 
020027 170000 
103771 

.SBTTL POwERUP-Test and set up I/O-page RAM 

;;;;;i;;; i;;;;;; li;;;;;;;;;;;i;; J;;;;;;;;i;; i; i;;;;;;; Ii;;;; 
:;;;;;;;:;,;;;;;;;;;;;;;:;;;;;;;;;;;;i;;;;;;;;;;;;,;;;iii;;; 
; ; ; ; 
; ; ; ; 
; ; ; ; 
; ; ; ; 

1/0 PAGE RAM TEST 
AND INITIALIZATION 

; ; ; , 
; ; ; ; 
; ; ; ; .... , , , , 

;i;;;;;;;;;;;;;;;;;;;;:;:;;;;;;;;;;;;:;;;;;;;;;;:;;;';iii;;; 
:;;:;;;:;;;;;;;;;;;:;;:;;;;;;;;;;1;;;;;;;;;1;;;;;:;;1; iii;;; 

write the location's address into the location and read it baCk. 
Do this for all 110 page RAM locations. 
If it fails, enter tight loop. 

In the process, clear all of this HAM. Note that the default 
value of most of tne control and flag words is zero. 

MOV 'RAMI;QT, RO ,Lowest address of RAM 
ls: MOV RO, (RO) ,Write the adaress 

eMF RO, (fW) :Read it baCk 
2$: i:!N~ 2$ :Tight failure loop 

CLR (kO)+ ;Clear and go on to next 
CMP RO,iRAMTOP+2 ; Until no more to test. 
8LO 1$ 

location 



o 
I 

N 
00 

KXTll-A2 lK FIRMWARE 
PO~ERUP-TU"N OfF LED 

1 
2 
3 
4 
:. 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
n 
23 
24 
2:' 
26 

170344 005000 
17034b 077001 
170350 017001 
170352 077001 
170354 077001 

27 17035b 012137 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
3\1 
40 
41 
42 
43 
44 
4f> 
46 
47 
48 
49 
50 

170364 
170366 

170370 
170372 
170376 

170400 

005710 
000240 

103403 
004767 
000403 

052767 

MACRO V04.00 5-0CT-81 22:5&:27 PAGE 26 

000017 17620b 

000042 

100000 177362 

.SBTTL POWERUP-lurn off LED 

iii;;:;;;;:;;;:;;:;;;:;;;;;;:;;;;;;;;;;;;;:;;;:;:;;;;:iii;;; 
; ; ; ; .i ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 
; ; ; ; 
; ; ; ; 
, , , , 

D~LAY SO THAT LED IS ON A VISIBLE LENGTH OF TIME 
; ; ; ; 
, , , , 
, , , , 

;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;';;;;;;; i;;;;;;;;;;;;;;; 
;;;;;;;;;;;;;; I;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Ii;;; i;;;;;;; 

CLR RO 
3S: SOB RO,3$ ;Tllis leaves a 0 in RO, IOlllcll 
4$: SOB RO,4$ is essential for testing for 
5$: SOB RO,5$ the presence of memory at 
6$: SOB kO,6$ zero below. 

; Under no Circumstances can 1(0 be altered until "lOW core" 

:;;:i;;;;;;:;;;;;;;;;;;:;;;;;;;;;;;:;:;;;;;;;;;:;;;;;;:i:;:; 
;i:i:;;;;;;;;;:;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;:; 
, , , , 
; 1 ; ; rURN OFf LED 

; ; ; ; 
; ; ; ; 
, , , , 

;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;iii;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:iii;;; 

MOV #LEDOFF,@,PP.CWR 

.SBTTL POWERUP-Test for "lOW core" 

iii:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iii;;; ....... ~ ................................................... . 
"""""""""""""""""""""""""""""" ; ; ; ; 
; ; ; ; TEST fOR MEMORY AT OOOOuO , , , , 

; ; ; ; 
;;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;I;;;;; 
;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;:;;;;;iii;;; 

test 

Read memory at 000000, discard result. If tills fails, exit to 
AUTOBAUD ratller tnan continuing witll normal powerup sequence. 

TST (RO) 
NOt' ;This will execute even 

; last instruction times 

below. 

1£ 
out 

BCS 7$ ;l'lmed out, don't set vectors 
CALL VECSET ;Di<in't time out, so go allead 
bR ~$ ;Don't set the NO. LOW flag 

7$: IllS tNO.L,OW,B.CNtL ;Dld time out, 
; so let tile world Know. 



KXTII-A2 lK FIRM~ARE 
POwERUP-EXIT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 170406 
12 170414 
13 170422 
14 
15 170424 
16 170424 
17 170430 
18 1704J4 
19 
20 
21 
22 
23 
24 
2:) 
26 
27 
28 
29 
30 
31 
32 
33 
34 170440 
35 170440 
36 170,*4& 
37 170454 
38 170462 
39 170470 

012767 
012767 
000423 

005067 
01270& 
000167 

012737 
012737 
012737 
012737 
000207 

MACRO V04.00 5-UCT-81 22:56:27 PAGE 27 

000300 
170424 

177334 
167644 
000142 

170000 
000340 
170006 
000340 

171340 
177330 

000140 
000142 
0001!J0 
000102 

.SBTIL POWERUP-Exit 

,. ... ,. ,. ....... ,. ,. ........ " ... ,. ,. " ... ,. ,. ,. ,. ,. . ,. ,. ... ,. ............... ,. ,. .. ,. . " .... " ,. ... ,. .. .. ",,",",,""",,,,"""",",,,",,,"",,""""",," 
;;;;;i;;;;;;;;;;;;;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; 
ii;; ;;;1 
; ; ; ; 
; ; ; ; 

EXIT FROM POwER-UP SEQUENCE ; ; ; ; 

;; II;;;;;;;;,;;; I;;;;;;; I;;;;;;;;;;;;;;;;;;;;;;;;;;; i;;; i; i; 
;;;; I;;;;;;;;;;; li;;;;;;;;;;;i;;;;;;;;;;;;;;;;;;;;;;;i;;;;;; 

8$: 

fAI<.OUT: 

MOV 
MOV 
Sf< 

CLR 
MOV 
JMP 

'Pf<16,SAVPS 
'FAKUUl',SAVPC 
AUTOBA 

IN.USk 
U$TACK,SP 
DDT 

;1£ P is typed in reponse to 
DDT prompt before lOading R7, 
will force yet more DDT. 

BUT IN THE RIGHT MODE! 
And wltnout running out Of 

staCK, either. 

.SBTTL POWERUP-Subroutlne to initialize vectors 

;;;;;;;;;;:;;;;;;:;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;I;;;;; ............................................................................................ 
"""""""""""""""""""""""""""""" ; ; ; ; 
, , , , 
, , , , 

INITIALIZE VECTORS 

.... , , , , 
; ; ; ; ...... , , , , 

;;;;;;;;;;;;;;;;;;;;;;;;;; I;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; 

Note: This subroutine is also used by the bootstrap module, to 
restore the vector area in tne event that an invalid boot blOCK 
was read into low memory. 

VECSET:: 
MOV 
MOV 
MOV 
MOV 
RETURN 

#$$$8RK,U140 
#PRL7,!il#1,*2 
I$$SLTC,@UOO 
11'1<17 ,Ul02 

Set up the BREAK-detect 
vector. 

Set up the line time clOCK 
vector. 



v , 
W 
o 

KXTll-A2 lK ~lRMWARE MACRO V04.00 5-0CT-B1 22:56:27 PAGE 2ij 
AUTOBAUD-SINCHRONIZE WITH CONSOLE 

1 
2 
3 
4 
5 
I:> 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
3~ 

3/:> 
37 
38 
39 
40 
41 
42 
43 170472 
44 170472 
4~ 1705uO 
46 170502 
47 170504 

01:.1737 
005000 
077001 
077001 

000032 1775/:>4 

.SBTTL AUTOBAUD-synchron1ze with Console 

; i;;;;;;;; ii;;;i;;;;;i;;;; Ii;;;;;;;;;; li;;;;;;;;;;;i;;;;;;;; 
;;;;;;;I;;;;;;;i;;;;;;; i;;;i;;;;;;;;;; li;;;;;;;;;;;i;;;;;;;; 
ji;; Ii;; 

AUTOBAUD MODULE ........ , , , , 
, , , , , , , , 
........................................................................................................................ 
"""""""","1""'",""""""""""""" """ ;;;;;;;;;;;;;;;;;;;;;;;;;; ji;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

Oescription: 

AUTOBAUD allows the FALCON to automatically synchronize its 
console DLAHT to the baud rate of the console terminal. 
On power-up, the user must type a carriage return character. 
Upon synchronization, AUTOBAUD will proceed to DDT where an .~. 

character will be displayed on tne console. 

Autobaud will loop indefinitely until synchronization is successful. 

The algorithm requires that the console terminal generates a 
zero (space) for the eighth bit in the carriage return. This 
will happen it the terminal Is capable ot sending eight-bit­
no-parity or seveo-bit-odo-parity Characters. 

Environment: 

Interrupts must be disabled for the algorithm to execute correctly 
since time durations are critical and delays due to long 
service routines may cause DLART overruns, ~hicn this routine 
ignores but cannot tolerate. 

VTI03/FALCON configurations leave garbage in tne DLART long atter tne 
po_erup sequence has beyun. we must delay a bit oetore clearing garbage 
out of tne DLAR1, otherwise the garbage would arrive after the clear 
(i.e., while pOlling tor input). Tne "qarbage" is an X-ON «CIHL-q» 
that the VT-IOO hardware sends after its power-up diagnostics have 
completed successfully. 

AUTOBA:: 
MOV 
CLR 
5GB 
5013 

#BAUDRS,@#XCSRSI 
HO 
RO,. 
£<0, • 

;Set 2400 baud 
;Delay 

.5 
seconds 



KXT11-A2 1K F'IRMWARE MACRO V04.00 5-0C1-81 22:56:27 PAGE 29 
AOlaBAUD-Sr~CHRUNIZE wIl'H CUNSOLt: 

1 ; AUTOBAUD proper: 
2 
3 170506 105737 177562 10$: TSIB URBUf$1 dlscard any garbage 
4 
5 170!)12 105737 177560 20$: TST8 URCSR$1 walt for input 
0 170516 100375 BPL 20$ 
7 170520 113700 177562 MOVB UI<BUf$l, RO RO ; input character 
8 170524 012701 170550 MOV UNBYTI;;, R1 R1 -> scrambled char table 
9 170530 120021 30$: CMPB RO, (R1H In the table? 

10 170532 001411 BEQ HVBAUO yes 
11 170534 020127 170550 CMi- R1, UNBYTS end of table reached? 
12 170540 001373 BNE 30$ not yet 
13 170542 005000 CLR RO uh oh, walt for DLART to clear out 
14 170544 071001 406: SOB RO, 40$ wait for a whlle 
15 170546 000757 BR 10$ and try for another character 
16 
17 ; Table of what you would see If an octal 15 were sent at the fOllowlng 
18 ; baud rates. 
19 
20 170550 HHIYTE: 
21 170550 200 .BYTE 200 300 
22 170551 170 .BYTE 170 600 
23 170552 Ho .BnE 340 1200 
24 170553 015 .BYTE 15 2400 
25 170554 362 .Bnt: 362 4800 
26 170555 377 .BYTE 377 9600, 19200, 38400 

tI 27 170556 INBYTS: 
I 28 W 29 ; we have a match. set baud rate Into DLARr. 

30 
31 170551> 1!VIlAUD: 
32 170550 162701 170551 SUB UliitHTE+l, Rl turn pointer 1nto bit maSK 
)j 170502 000301 ASL R1 
34 17051>4 00&301 ASL Rl 
35 170506 005201 INC R1 turn on XC.PBE 
30 170570 006301 ASL R1 set tne baud rate 
37 170572 010137 177564 MaV Rl, i.lUCSR$l into CSR 
38 170576 005000 CLR RO delay .24 seconds for rest 
39 170600 077001 SOB RO, • of char. at 510 baud rates 
40 
41 f'all Into ODT. 



tJ 
I 

W 
N 

KXT11-A2 1K fIRM~ARE 
MACROODT-INTRODUCTlON 

1 
2 
3 
4 
~ 

6 
1 
8 
9 

10 
11 
12 
13 
14 
15 
16 
11 
18 
19 
20 
21 
22 
23 
24 
2!> 
2b 
27 
2~ 

29 
30 
31 

MACRO V04.00 5-0CT-81 22:56:27 PAG~ 30 

.SBTTL macroODT-Introduction 

;;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; 
;;1;;;;;;;;; ii;;;i I;;;;i ;;;;;; I;;;;;; ii;;;;;;I;; ;;;:;;;; Ii;; 
; ; ; ; , , , , 
, , , , macroODT , , , , ...... , , , , 
i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;Ii;;;; 
;i;;:;;;;;;;,;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;;iii;;; 

macroODT 1s the user interface to the functions contained 
in the KXT11-A2 firmware product. It interprets commandS 
entered via the console terminal keyboard (see tables oelow) 
to permit the user to load a program into memory, execute 
it and debug it. 

COMMAND 
1- Slash (Il 

a-OPEN MEMORY LOCATION 
b-OPEN GENERAL REGISTER 
c-OPEN STATUS REGISTER 

2- Carriage return «CR» 
a-CHANGE AND CLOSE ~EMORY LOCATION UR R~GISTER 
o-CLUSL WITHOUT CHANGE 

3- Line feed «Lf» 
a- CHA~GE AN~ CLOSE MLMURI LOCATION AND OP~N NEXT 
b- CLOSE MEMORY LUCATlON wITHUUT CHANGING AND OPEN NEXT 

4- (,0 (G) 
!>- Proceed (Pl 
6- Execute 1/0 diagnostics (X) 
7- ~xecute bootstraps (D) 



KXT11-A2 1K FIRMWARE 
MACROOOT-IhTRODUCTION 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
11 
18 
19 
20 
21 
22 
23 
24 
25 
21> 
27 
28 
29 
30 
31 
32 
33 
34 
3!> 

MACRO V04.00 5-0CT-81 22:56:27 PAGE 31 

;SINTAX OF COMMANDS LIStED ABOVE, SHOWING CONSOLE BEFOHE, 
;DURING AND AfTER THE TI~!NG OF THE COMMAND. 

; 
;la 
nb 
;1c 
;2a 
;2a 
;2a 
;2a 
;~b 

;2b 
;2b 
;20 
;3a 
;3a 
;3b 
;3b 
;4 
;5 
;6 
; 
;7 
;7 
;7 
;7 
;7 
;7 

Key: n-an octal integer typed by the user, only 
last b digits signiticant 

x-a single octal digit 
u-the diglts 0 or 1 
all other characters are literals 

BEFloHE DURING AFTER 

~ IiInl IiIn/xxxxxx 
III IiIRxl IlIRx/xxxxxx 
III IIIRSI IiIRS/xxxxxx 
@n/xxxxxx f!ln/xxxxxx n<CR> iii 
IiIRx/xxxxxx IlIRx/xxllxxx n<CR> III 
IiIRS/xxxxxx @Rx/xxxxxx n<CR> iii 
xxxxxx/xxxxxx xxxxxx/xxxxxx n<CR> III 
@n/xxxxxx IiIn/xxxxxx <eR> iii 
@Rx/xxxxxx IiIRx/xxxxxx <CR> ~ 
IlIRS/xxxxxx IlIRS/xxxxxx <CR> iii 
xxxxxx/xxxxxx xxxxxx/xxxxxx <CR> iii 
IiIn/xxxxxx IlIn/xxxxxx n<LF> xxxxxx/xxxxxx 
xxxxxx/xxxxxx xxxxxx/xxxxxx n<LF> xxxxxx/xxxxxx 
IiIn/xxxxxx IiIn/xxxxxx <LF> xxxxxx/xxxxxx 
xxxxxx/xxxxxx xxxxxx/xxxxxx <LF> xxxxxx/xxxxxx 
iii IlInG 
iii @P 
iii IilJ( xxxxxx 

iii 
iii IjIDDu 
iii IiIDXu 
iii IiIDlu 
iii IiIDU<CR> 
III IiIDX<CR> 
@ (iDI<CR> 



KXT11-A2 lK FIRMWARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 32 
MACROOOT-SAVE STATUS AND PRINT PROMPT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 170602 
12 170&02 
13 
14 
IS 
16 17060& 
17 
18 
19 
20 170&14 
21 170&20 
22 
23 
24 
2~ 170&24 
26 170630 
27 170632 
28 170634 
29 170636 
30 170640 
31 170642 
32 170644 
33 
14 
35 
36 170650 
37 170&54 
38 
39 170&56 
40 1706&2 
41 170666 
42 170666 
43 
44 170072 
45 
46 
47 
48 170674 
49 170674 
50 170700 
51 170702 
52 170702 
53 
54 170700 
55 170712 
56 170716 
57 170722 

105737 

010767 

010&&7 
012706 

016716 
010540 
010446 
010346 
010246 
01014& 
010046 
010067 

005767 
100004 

016700 
004 "/6 7 

105767 

100003 

012700 
000402 

012700 

005067 
106427 
004707 
00!:>067 

177562 

177150 

177140 
1&7744 

177130 

177106 

17710& 

177070 
0007&4 

177070 

171730 

171731 

1770~0 
000300 
000620 
177022 

177100 

.SBTTL macroODT-Save status and print prompt 

ii;;;;;;;;,,;;;;;;;;;;;;;;;;;;;,;;;;;;;;;;,;;;;;;;;;;;iii;;; 
ii;;i;;;;;:;;;;;;;;;;;;;';;':;;;;;;;;;;;;;;;;;;;;;;;;;Ii;;;; 
; ; ; ; 
; ; ; ; 
; ; ; ; 

SAVE CON1~XT, PRINT MESSAGES AND PROMPT 
; ; ; ; 
; ; ; ; 
lin 

;;;;;;;;;;;;;;1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1 iii;;; 
i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;;;;;;iii;;; 

ODT:: 
TSTB URBUt$l ;Clear out console garbage 

; Copy the restart type word into user area 

MOV R.TYPE,UDTWHY 

Protect aga1nst stack timeouts, but save user's SP first 

MOV 
MOV 

SP,USERSP 
'ODTSIK,SP 

Save rest of user program's context 

MOV 
MOY 
MUV 
MOY 
MOV 
MOV 
''IOY 
MOV 

USERSP,(SP) 
R5,-CSP) 
R4,-CSi:') 
R3,-CSP) 
f<2,-(SP) 
Rl,-(SP) 
RO,-(SP) 
SP,RPOINT 

;SAVE USERS STACK POINTER 
;LOAD NE" SP 

;RESERVE LOCATION FOR R& 
;SAVE 

ALL 
OF 

USER'S 
GEhEf<AL 

REGISTt:;f<S 
:POINTER TO RO 

Determine whether "J" or PC message is appropr1ate, and print it 

QODT: 

TST 
BPL 

MOV 
CALL 

TSTB 

BPL 

R.TYPE 
QUilT 

SAVPC,RO 
OCTSTO 

R. TYPE 

KBDS 

;Did we get a HALT or BREAK? 
;NO-next question 
:YES-PRINT PC 
: GET S'rOPPED PC 
;lYPE THE PC Oh TERMINAL 

;SE£ IF RESTART OCCURRED 
;CNXM ONLY-BIT 7 SET) 
:TYPE PROMPT 

; Here's where tne prompt gets pr1nted, with or w1thout leading "1" 

KBD!H 

KBDS: 

MOV 
BR 

MOV 

PRINT: CLR 
MTPS 
CALL 
CLR 

U'SGQ,I<O 
PRINT 

'MSGS,RO 

R.TYPE 
fPRI& 
PUTSTR 
ODU'LG 

; GET 1 ADDRESS 
;TYPE IN MESSAGE 

:GET PROMPT MESSAGE ADORESS 

So reentry gives no error msg. 
Allow BREAKs to happen 
TYPE THE PROMPT ALREADY 
CLEAR FLAG FOR hEW ENTRY 



9 w 
VI 

KXT11-A2 1K FIRMWARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 33 
MACROODT-GET OOT COMMAND 

1 .SBTTL macroODT-Get ODT command 
2 
j ;i;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;';;;;;;;;;;;;;;;i 
4 i;;;;;;;;;;;;:;;;;;:;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;i 
~ ;ii; 
b 
7 
8 
9 

; ; ; ; 
; ; ; ; 

INTERPRET FIRST CHARACTER OF COMMAhD 

;;;;;;;;:1';1;;;;;;;:;;;;:;;;;;;;;1;;;;;;;;;;;;;;;;;;;Ii 
;;ili;;;;;;;;;;;;;;;;;;;:;;I;I;;:;:;;;;;;;;;;;;;:;;;;;;i 

Note: following CALL GETCHR, the character (7 bit ASCII) 
appears in R2. 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
2!1 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

t<ote: following CALL GETNUM, If carry Is clear, the octal integer 
was followed by a carrIage return. 

Note: On exIt to LCSET or falling through to GO routine, RO contaIns 
the address typed in. 

170726 004767 000556 CALL GETCHR ; ••• INPUT CHARACTERS 
170732 1211227 000104 CMPB R2,.·O ;BOOTSTRAPS? 
170736 001002 BNE U ;NO 
170740 000167 001no JMP BUOTS ;YES 

170744 120227 000130 1$: CMPB R2,f'X ;DIAGNOSTICS? 
170750 001002 BNE 2$ ;NO 
170752 000167 000776 JMP OIAGNO ;YES 

170756 120227 000120 2$: CMPB R2,#'P ;PROCEED? 
170762 001430 BEQ PCIiIO ;rES 
170704 1202:t7 000122 CMPB H2,,'R ;REGISTER? 
170770 001465 BEQ RCMD ;YES 
170772 120227 000060 CMPB R2,.·0 ;OCTAL DIGIT? 
170776 103736 BLO KBDQ ;hO,ERHUR 
171000 120227 000070 CMPB k2,,'8 ; VALID OIGIT? 
171004 103333 BHIS KBDQ ;NO,ERHOH 
171006 005000 CLR RO ;ITS A DIGIT 
171010 004767 000576 CALL GETNUM 1GET REST Uf THE DIGIT OR" CMD 
171014 103327 BCC KBUQ ;CR WAS ISSUED,ERROR 

The last character at the end of the number could be a valId command-
Let's cheek: 

171016 120227 000O~7 CMPa R2,.·/ EXAMINE LOCATION? 
171022 001511 BEQ LCSET YES 
171024 120227 000107 CMPB R2,.'G GO TO? 
171030 001321 BNE KBDQ NO, ERROR 



KXT11-A2 1K FIRMWARE MACRO Y04.00 5-0CT-81 22:56:27 PAGE 34 
MACROOPT-G~T ODT COMMAND 

1 
2 
3 
4 
!I 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
2!> 

TABLE OF PEHMISSABLE STATES 

hOe STAT~ 

1- prompt @ 

2- @1756:l0 
[input dig1tl 

3- @176000/000002 

4- @200/000023 12 

!I- @R 

6- IlIR5 
7- @1<5/000U24 

11- @R5/000024 16 

VALID INPUTS 
0-7 

P 
R 
X 
o 

0-7 
1 
G 

0-7 
LF 
CH 

0-7 
LF 
CR 

0-7 
S 
1 

0-7 
CR 

0-7 
CR 

COMMENT 
-------> digit. -------> proceed. -------> register designator. -------> execute diagnost1c -------> Doot from device -------> anotner digit. -------> examine loco 
-------> go from loc n. -------> input new value. -------> display next loco 
-------> close loc go to prompt. -------> 1nput more digits. -------> save data display next. 
-------) save data go to prompt. 
-------) register number. 
-------) PSw. 
-------) examine. -------> input new value. 
-------) close location. 
-------) more digits input 
-------) save value go to prompt 



KXTll-A2 1K FIRMWARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 35 
MACROOOT- bO AND PROCEEO 

1 
2 
3 
4 
!I 
6 
7 
8 
!i 

10 
11 171032 
12 
13 
14 
15 171036 
16 171040 
17 
18 
19 
20 
21 
22 171044 
23 
24 171044 
25 171050 
26 171052 
27 171054 
28 171056 
29 171060 
30 171062 
31 
32 
33 
34 
35 171064 
36 
37 171072 
38 
39 
40 
41 171074 
42 17107& 
43 171100 
44 171102 
45 171104 
46 171106 
47 
48 171110 
49 
50 171114 
51 171120 
52 171122 
53 171126 
54 171132 
55 17113& 
56 171140 
57 171142 

010067 

000005 
005067 

016600 
005740 
000240 
103403 
005740 
000240 
103004 

012767 

000700 

012600 
012601 
012602 
012603 
012604 
012605 

106427 

042716 
011606 
005167 
016746 
01674& 
000006 
000655 
000657 

176714 

176710 

000014 

000201 

000340 

000001 

17663& 
17&622 
176&14 

176702 

.S~TTL macrouUT- Go and Proceed 

;;;;;;;;;;:;;;:;:1;;;;';;;;:;:;;:;;;',;;;;;;;;:;;;;;;;il 
;;;;;;:;;;;;;;;;;;;;;;:;;;;:,,;;;:;;;;;;:;;;;;;;;;:;;; I; 
; ; ; ; 
; ; ; ; PHOCESS GU AND PROCEED OOT COMMANDS 

;;;';;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;i; I';;;;;;;;;;;;;; 
;;;;;;,:;;;;;;;:;;;;;:;;;;;:;;:;;:;:;;;;;:,;;;;;;;;;;; Ii 

MOV RO,SAVPC ;PUT SUPPLIED PC IN MEMORY LOCATION 

Prepare the environment for the Go command 

RESET 
CLR SAVPS 

Entry p01nt tor tne Proceed command 

F1rst, cheCK for val1d stack: 

PCMD: 

MOV 
TST 
Nap 
Bes 
TST 
Nap 
Bce 

14(SP),RO 
-(RO) 

1$ 
-(RO) 

2$ 

;BUS IhITIALIZE 
;CLEAR PSW 

;User's staCK pointer 
;wnere SAVPS will go (see below) 
; (1n case of time out) 
;No good. Timed out. 
;where SAVPC w1ll gO 
; 
;Sufficient stack. 

EITHER Stack no gOOd, so simulate a double bus trap without losing the 
user's context as stored in the ODT stack. 

1$: MOV tR.STAK!R.NXM,ODTWHY 

KBDQ 

;Sneakyl (R.TYPE untouched­
; only the user image of it) 
;Error prompt. 

; OR Stack i& UK, 50 restore user's context. 

2$: MOV 
MOV 
MOV 
MOV 
MOV 
MOV 

MTPS 

Ble 
MOV 
COM 
MOV 
MOV 
RTT 

HKBDQ: BR 
HKBDS: BR 

(SP)+,RO 
(SP)+,Rl 
(SP)+,i<2 
(SP)+,RJ 
(SP)+,R4 
(SP)+,R5 

#PRI7 

.BlTO, (SP) 
(SP),SP 
IN.USR 
SAVPS,-(SP) 
SAVpe,-(SP) 

KBDQ 
IOlliS 

RESTORE 
ALL 

OF 
USER'S 

GENERAL 
REGIS'IERS 

No BREAKS allowed unt~l out of 
ODT! 

Odd stacks are too odd for T-11 
RESTORE USER SP 
Set user mode 
RESTORE PC AND PS TO ••• 
••• STACK WHERE RIT WILL LOOK 
RETURN TO USEHS PROGRAM 
tlELP IN BR 
HELP iN BR 



KXTII-A2 lK FlkMWARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 36 
MACROODT-REGISTEk AND PS COMMAND 

1 .SIlT'rL ffiacroODT-Re~ister and PS command 
2 
3 :;;;;;:;:;;;;,;;:;,;;;;;;;,;;;;;;;:;;;;;:;:;;;;;;;;;;;I;; 
4 ii;;;;;;;;:;;;;;;;;;;;;:;;;;;;;;:;;;;:;:;;;;;;;;;;;;;;Ii; 
5 ; ; ; ; 
6 ; ; ; ; PROCESS ODT REGISTER COMMANDS 
7 ; ; ; ; 
8 ii;:;;;;;;;;;;;;:;;;:;;;;;;;;;;:;;;;;;;;;;;;;:;;;;;;;:"; 
9 ;;;;;;;; Ii;;;;;;;;;;;;;;;;; Ii;;;;;;;;;;;;;;;;;;;;; J;;;;;; 

10 
11 ; E,ntry point for Rx and RS commands 
12 
13 171144 RCMD: 
14 171144 052767 000200 176576 BIS 'KFLAG,ODTFLG ;SET REGISTER FLAG 
15 171152 004767 000420 CALL ONENUM ;GET REGISTER NUMSER 
16 17115b 103246 sec KIlDQ ;A VALID eMD DID NOT FOI..I..OW 
17 1711 60 1:./02:<17 000123 eMPI! R2,.'S ;IS IT THE RS? 
18 1711&4 001412 SEQ SWCMLl ;YES,BRANCH 
19 171166 120227 000057 CMPB 1<2,,', ;EXAMINE? 
:./0 171172 001240 ShE KBDw ;NO,ERROR 
21 1711"14 020027 000007 CMP RO,17 ;>71 
22 171200 101235 SHI KBDQ ;YES,ERROR 
23 171202 001013 BNE RCHDI ;IS IT EXACTLY SEVEN 
24 171204 012700 167752 MuV tSAVPC,kO HES,GET PC ADDRESS 
25 171210 00041J IlR REGOIJT ;DISPI..AY 
2& 

0 27 Status re\;llster (PS) selected: 
I 28 w 

00 29 171212 SwCHD: 
30 171212 004767 000272 CALL GE'1CHR ;WHAT YOU WANT '10 DO wITH liS? 
31 171216 120221 000057 CMPS R2,.', ;EXAMINE? 
32 171,,22 001224 SNE KSDQ ;riO,ERRuR 
33 171224 012700 167754 MOV tSAVPS,RU ;GET ADDRESS WHERt; PS IS 
34 171230 000403 SR Rt:(;OU1 ;GO AND DISPLAY 
35 
36 171232 006300 RCMD1: ASL RO SHIFT .'OR OFFSET It; MEMORY 
37 171234 066700 17b51& ADD RPOlhT,RO GET EXACT ADDRESS OF REG. 
38 171240 0100&1 176502 REGOU'I: MOV RO,ODJ:l..uC STORE LOCA'fION 
39 171244 000402 BR LOCDSP DIS~I..AY 



V 
I 

W 
\0 

KXT11-A2 lK FIRMwARE MACRO V04.00 
HACROOuT-£XA~INE AND DEPOSIT 

1 
2 
3 
4 
5 
o 
7 
Ii 
9 

10 
11 
12 
13 
14 
15 
10 
17 171240 
18 171252 
19 171254 
20 
21 171256 
22 171260 
23 171264 
24 171270 
25 171274 
26 171300 
27 171304 
28 171306 
29 171312 
30 171314 
31 171320 
32 171322 
33 171324 
34 17133u 
35 
36 171332 
37 171336 
38 171340 
39 171344 
40 
41 
42 
43 
44 
45 171346 
46 171354 
41 171356 
48 171362 
49 171366 
50 171370 
51 
52 
53 

010067 
011000 
000240 

103730 
004767 
112702 
004767 
004767 
120227 
001716 
120227 
103450 
120227 
103307 
005000 
004707 
10300b 

120227 
001300 
105767 
100675 

022767 
001021 
042700 
005707 
100402 
042700 

176474 

000372 
000040 
Ou0226 
000210 
000015 

000060 

000070 

000262 

000012 

176404 

167754 

177400 
176404 

000020 

176372 

5-0CT-81 22:56:27 PAGE 37 

.SBTTL macroODT-Examine and Deposit 

;;;;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;i11i1; 
;;;;;;;;;;;;;;;;;;;;;;1;;;;;;;;;;;;;;;;;;;;;;;1,;;;;1;I;;;;; 
; ; ; ; 1111 
~~~~ PROCESS ODT MEMORr AND REGIST~R EXAMINE/DEPOSIT ~~I; 
; ; ; I ; II ;
;;;i;;';;;;;;;;;;;;; Ii;;';;';;;;;;;;;;;;;;;;;;;;;;;;,;;;;; Ii
i1i;;;;;;;";;1;1;1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;I;;;;; iii;;;

; ODTLOC points to re9ister or memory location
~ Following CALL GETNUM, if carry is clear, CR followed di9it.
~ ODTFLG: If register bit set indicates re91ster is being examined

~ENTRY FROM CMD ROUTINE AFTER LaC. VALUE IS GIVEN

LCSET: MOV
LOCDSP: MOV

NOP

BCS
CALL
MOYS
CALL
CALL
CPlPB
SEQ
CMPS
SLO
CMPS
8HIS
CLR
CALL
BCC

CMPS
SNE
TSTS
SMI

RO,ODTLOC
(£(0) ,RO

HKBDQ
OCI'STR
#SPACE,k2
PUTCHR
GETCltR
H2,.CR
hKBD$
R2,"O
4$

R:t,"8
tlKBDQ
RO
GI!;TNUM
1$

R2,'LF
I1K8DIol
DDTFLG
tlKBDQ

~SAY~ NEW LOCATION
;G~T DATA
~So next inst. does not execute
~1f we time out.
~Print "1" If we timed out
~PRINT IT
~Pr1nt a space after the data

~GEf NEXT CHARACTER
~fIN!SH

~YES,CLOSE LOCATION
~DEPOSIT1
,NO,CHECK LF
~MAYBEl

~HO,f'OHGET IT
;YES
~G~T REST OF NUMSER
~CH FOUND, STORE NEW YALU~

~Not CR, must be LF
~Print error message
~If LF, cannot be register
~ (Error exit)

T~SIT FILTER. The T-blT can be set from the keyboard via ODT.
This can either be useful tor debUgg1ng or disastrous. So, you can
do 1t only if you first set FILT.l 1n O.CNTL (SIT 15).

1$:

;2$:

CMP
BiliE
SIC
TST
SMI
SIC

'SAVPS,ODTLOC
3$
,AC<377>,RO
O.ChTL
2$
IT.SIT,kO

IAre we diddling the PS?
~No, we're not.
~PS is not a word.
,Is SIT 15 (FILT.f) SET?
~Yes, the filter's disabled
~KILL THE T-SIT

;Fall toru to Priority 7
~ Fllter

KXT11-A2 lK FIRMwARE MACRO V04.00 5-0CT-~1 22:56:27 PAGE 38
MACROODT-EXAMINE AND DEPOSIT

1 ;Prior1ty-7 f1lter: unless FILT. 7 (BIT 7) in O.CNl'L 15 set, you cannot
2 ;actually set the PS to pr1or1ty 7 us1ng OUT from the keyboard. Thls
3 ;protects the ab1lity to break.
4
5 171374 105767 176372 2$: TST8 O.C,nL lOOt control word
6 171400 100407 BMI 3$;00 nothing-f1lter disabled
7 171402 105700 TSTB 1<0 ;Intended new PS
8 171404 100005 BPL 3$;00 nothlng-Prior1ty < 4
9 171406 032700 000100 BIT 'BlT6, RO ; Check again

10 171412 001402 BEQ 3$;00 nothing-Priority < Ii
11 111414 042700 000040 BIC 'BIT5,RO ;LOwER THE BOOM
12 171420 010077 176322 3S: MOV RO,fI\ODTLOC ;STOR~ NEw VALUE
13 171424 120227 000012 CMPB 1\2, 'LE' ;Go on to next location?
14 17143(; 001407 BEQ 5$;Sure, why not.
15 171432 000643 BR HJ<BDS ;GO TO PROMPT
16
17 171434 120227 000012 4S: CMPS R2,.LF ;IS A LF ISSUED
18 171440 001237 BNE HK8UQ ;NO,ERROR
19 171442 105767 176302 'Ut8 ODTFLG ;15 REGIStER FLAG SET
20 171446 100634 8MI hK80Q ;YES, LF NOT PERMITTED
21 171450 112702 000015 5$: MOVS 'CR,/<2 ;TO LINE UP CURSOR
22 171454 004767 000042 CALL PUTChR ;SENU IT
23 171460 062767 000002 176260 ADD .2,00TLOC ;GET ADDRESS OF NEXT LOC.
24 171466 016700 176254 MOV OOTLOC,RO ;GET NEXT ADDHESS VALUE •••
25 171472 004767 000160 CAuL OCTStl< ; ••• AND PklNt IT
26 171476 112702 000057 MOVB ,'I,R2 ;SEND A SLASH BEFORE •••

0 27 171502 004767 000014 ,CALL purCnl< ; ••• SHO~ING THE CO~TENTS ••• , 28 171506 000661 BR LOCIlSP ; ••• Of THE LOCATlON
.j:::..
0

KXTII-A2 lK fIRMWARE MACRO V04.00
MACROODT-GET AND ECHO CHAKACTER

1
2
3
4
S
6
7
S
9

10
11
12
13
14
1~ 171!HO
16 17l~10
17171514
18 17151b
19 171522
20 171522
21 17152b
22 171530
23 171534
24 171540

105737
100375
113702

105737
100375
110237
042702
000207

177560

177562

177564

177566
177600

5-0CT-81 22:5b:27 PAGE 39

.SBTTL macroOUl-Get and echo character

" """",""""""""""""",""",,,"""," """ ;;;;;;;;;;;:;;;;;;;;;:;;;;;;;;;;;;;;;:;:;;;;;;;;;;:;;;I;;;;;
; ; ; ;
; ; ; ;
, , , ,

, , , ,
CHARACTER INPUT AND ECHO SUBRUUTINE

:;;;;;;;;;:;:;:;,;;;;;;;;;;;;;;;;;;:;:;;;;;;;;;;;;;;:;;;;:;:
;;;;;;;;;;;;;;;;;;;;;;;;;;; ;,;;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;

Get a character from the console keyboard and echo it baCK
; exactly as received including parity cits if any. Return with
; character in R2, eighth bit (and high byte) zero.

GETCHk:
TST8 URCSRSl CHARACIEk READY?
BPL GETCHR BRANCH If NOT AND KEEP
MOVB @#KBUfS1,R2 TRANSfER CHARACTER

PUICHR:
TSTB fi\#XCSRSl PRINTER READY
l:lPL PUTCHR NO, nu AGAIN
MOVB R2,I!ifXBUfS1 YES, XMIl' CHARACTER
BIC .~C<l77>,R2 CLEAR PARITY
RETURN CONTINUE

TRiiNG

KXTII-A2 lK FIRMWARE MACNO V04.00 5-0CT-81 22t56:27 PAGE 40
MACROODT-TYPE ASCII STRING

1
2
3
4
5
6
7
8
9

10
11
12
13
14
1~ 171542
16 171542
17 171544
1li 17154&
19 1715!>2
20
21
22
~3 171554
24 171554
~~ 1715&0
26
21
28
29 171564
30 171570
31 171574

112002
100413
004767
000773

112702
004767

112702
004767
000207

177750

000015
177736

000012
177726

.S8TTL macroODT-Type ASCII strinQ

;;1;;'i",
;i;;;;;;i;;;;;;;;I;;;I;;;;;I;;;;;;;';;1;;;;;11;1;;I,;; ;;;;;,
; ; ; ;
; ; ; ;
; ; ; ;

MESSAG~ PRINT SUBROUTINE
; ; ; ;
; ; ; ;
; ; ; J

;;1,;',,;;;;;;;;;;;;;;;;;,;;;;;;;;;;;;;;,;;;;;;;;;;;;; I';;;;
;;;;1;;;;1;;1;;;;1;;;;;;;;;;1;;;;;;;;;;;;;;;',1;;1;;;;JlIi;'

; Print message starting w1th character pOinted to by RO and
; ending with first character w1th e1Qhth b1t set (th1s character
; 1s not pr1nted).

PUTSTH:
MOV8
bMI
CALL
BR

(NO)+,R2
DO"E
PUTCHR
PUTSTk

;ENTRY FOR CARRIAGE RETURN

PUTCLF:
MOVS
CAI.L

; ENTHY ~ OR L~'

'CH,R2
PU'rCHR

PUTI.F: MOVB 'LF,R2
CALL PUTCHR

DONE: RETURN

;GET ASCII CHAR
;15 IT THE END MARK?
;NO, PRINT IT
;MORE

;PRINT CR
;FALL THkU AND PRINT LF

;PRINT Lf

0
I

+:>.
w

KXT11-A2 1K FIRM~ARE MACRO V04.00 5-0CT-b1 ~2:56:27 PAGE 41
MACROODT-GET OCTAL DIGITS

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
16 17151&
11 111576
18 171&00
19 171600
20 171604
21 171610
22 171612
23 171612
24 171616
25 171622
26 171624
27 171626
28 111630
29 111632
30 171634
31
32 171636
33 171640
34
35 171642
36 171646
37 171050

005000

0047b7
120227
001412

162702
062702
103007
006300
006300
006300
050200
0007&1

000241
000207

062702
000261
000207

177704
000015

000070
000010

000060

.SBTTL macroODT-Get octal d1gits

;;;';;;',;;;';':1;;;;;';;;,;;;;;;;;;;;;;;;;;;;,,;;;;;;Ii ;;
;;;i;;;;';;;II;;;;I;I;;;;1;;;;;I;;;;;I;:;;;:,;;:;:;;;;;i Ii
I;;; Ii
; ; ; ;
; ; ; ;

NUMERIC INPUT ROUTINE n
; ;

;i;;";;;;;,;,;;";,;;;;;",,,;;;,;;;;;;;,,;,;;;;";;;;i I'
;;;;;;;;;;;,;;;;;;;;;;;,,;;;';;;;;;;";;;;;;;;;';;;;;;'i ;i

On ex1t, RO contains the binary representat10n ot the number entered
If the carry Dit 1s clear, a <CR> followed number
If the carry blt 1s ~et, some other character followed the number,
possibly a command.

ONI:.NUM:
CLR 1<0 ;CLEAR ACCUMULATOR

NEXNUM:
CALL GUCHR ;GET DIGIT OR TERMINATOR
C/oiPS R2,'CR ;CLEAR CARRY AND RETURN
BEQ SRI::T ;IF <CR> WAS TYPED

G.,;TNUM:
SUB "8,R2 ;CONVERT TO BIHARr •••
ADD ,'8-'O,R2 ; ••• AND TEST IF OCTAL OR NOT
BCC NOeT ;NUT VALID DIGIT.
ASL RO ;MAKE ROOM FOR NEw DIGIT
ASL RO ;DITTO
ASL RO ;OITTO
BIb £<2,RO ;PUT IT IN PLACE
SR t<EXNUM ;GET NEXT

SRET: CLC ;CLEAR CARRr
I<ETURN ;CON'rINUE

NOel': ADD .'O,R2 RESTORE ASCII BECAUSE •••
SEC ••• POSSItlLE COMMAND
t<E'rURti CONTINUE

KXTII-A2 lK FIRMwARE MACRO V04.00 ~-OCT-al 22:56:27 PAGE 42
MACROODT-OCTSTR--TYPE 8IhARY IN RO AS ASCII

1
2
3
4
5
6
7
8
9

10
11
12
13
14 171652
15 171656
1& 171656
17 171660
111 171&64
19 1716&6
20 171670
21 171672
22 171670
23 171702
24 171704
25 17170&
26 171710
21 171712
28 171714
29 171716
30 171120
31 171722
32 171724
33 111126

00471>7

010046
012746
005002
006100
00&102
062702
004767
00531&
001406
005002
006100
006102
006100
006102
000762
005726
012600
000207

177676

000006

0000&0
177.:.20

.S8TTL macroODT-OCTSTR--type binary In RO as ASCII

; ; ; ; ; ; ; ; ; I ; ; ; ; ; ; ; ; ; , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; I ; ; ; ; ; ; ; I ; ; ; _i ; ; ; ; ; ; ~ ; ; ; ;
;;;;;;;;;;;;;;;;;;;;;;;;; ;.,;;;;;;;;;;;;;;;;;;;; 1;;;;;;;',;; I
I;;;
, I I , NUMER!C OUTPUT ROUTINE
; ; ; ;

; ; ; ;
; ; ; ; , , , ,

;;;;;;;;;;;;;;;;;;;;;;;;I;;;;;;;;;I;;;;;;;;;;;;;;I!;;;iii;;;
iii;;1;;

~ Prints, as a 6-diglt octal integer, the value of the binary
; number In RO.

OCTSTO: CALL
OC'1'STR:

5$:

10$:

MOV
lo\QV
CLR
iWL
ROL
ADD
CALLo
DEC
SEQ
CLR
ROL
HOL
ROL
HOL
Sil
TST
MOV
RETURN

PUTCLF

RO,-lSP)
,6,-(SP)
R2
RO
R2
i'O,£<2
PUTCHk
lSP)
10$
£<2
RO
R2
RO
1\2
5$
(SP)+
lSP)+,RO

;NEED CRLF AT ODT ENTRY

SAVE VALUE
NO. OF CHAIlACTERS
OU'fPUT HOLD
SHIFT MS8 INTO 1.058
"nnIlNIt .. " ..

MAKE A DIGIT
OUTPUT A CHARACTER
CUUNT
DONE
NEXT
GET NEXT DIGIT INTO
R2
f'IRST TWO SITS
"n .. "" II ..

CONTINUE
CLEAR COUNT
ORIGlhAL VALUE

KXTll-A2 lK fIRMWARE MACRO VU4.00 5-0CT-~1 22:56:27 PAG~ 43
MACROODT-OUTPUr MESSAGES

1
2
j

4
~

b
7
8
...

10
11
12 171730
13 171731
14
15

077
1115 012 100

.SBTTL macroODT-Output messages

;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;;:;;;;;;;;:;:;:;;;:;;;:;;;;;;:
ii;';;;;:;;;;;;;;:;;;;;;;;;;;;:;:;;;;;:;:;;;;;;;:;;;;; I;;;;;
; ; ; ; ; ; ; ;

MI::SSAGES , , , , ... " , , , , , , , ,
.. " .. " " " .. " """" ,,
"",r"",.""",""""""""""""""""'" """ " " " .. " .. " " " " " ... " " " " " " " ,"",,,,,",,,,,,,,,,,,",","",",,,",.,,,,""" """

MS<;Q:
foISGS:

.NLIST BEX

.ASCII '1'

.A~CII <CR><Lf>'@'<200>

.I::VEN

.LIST b~X

ERROR MESSAGE:
PIWMPT

KXTll-A2 lK fIRMWAR~ MACRO V04.00 5-0CT-81 22:56:27 PAG£ 44
DIAGNOSTICS-fOR SLU2 AND PPI

1
2
j

4
5
6
7
8
9

10
11
12
13
14
15
16
17 171736
18 111740
19 171742
20
21
22
23
:.14 111142
25 171744
26 171746
27 1717:)0
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

171150

1717S4
171754
171762

171770

171772
171174

000100
000010

000000
000002
000006

377

012737
012737

005000

005001
000405

252

000221
000011

000

176206
176206

.SBI1L DIAGNOSTICS-tor SLU2 and PPI

:'i;':;;;;;;;;,;;;;;;",;;;;1;;;;;I;;;:':;I;;I;;;;I';1 Ii';;;
il1;;;;;;;;;;;';;;;11,;;;;;;,:,;;;;;;;;ll';;I;;;;;;,;;;1;;;;
;;;; Ii;;
~ ~ II OIAGI'IOSTIC MODULE ;;;;

"" ; HI -
;;;i;;;;;;;;;;;;;;:;;;;;;';;;;;I;;':;;;;;;,;;;;,;;;';;iiill;
;;;;;;:;;;;;:;;;;;;';;1;;;;;1;,;;;';;1;:;;;;;,;;;;;;;,",,;,

D1agnose PPI 1n mode 0 w1th loopback connectors 1nstalled.
D1agnose SLU2 1nternal c1rcu1try (ma1ntenance mode) and
SLU2 drivers/rece1vers (with external loopback connector).

List of error b1t definitions to return to user.

ERRBlT:

.wORD

.WORD
E.t;XT
E.IIIIT

; List of masks to put 1n XCSR$2. Perform internal 100pbaCk
; test f1rst, then external loopback test.

o
XC.PBE 300 baud

.WORD

.WORD

.WORD XC.rBE ! XC.MNT 300 baud and ma1ntenance
INns:

; L1st of pattern oytes to loop around.
; All bits on, alternating b1ts, all bits off.
; 1II0te: last byte must be O.

PATERN: .BYTE 377, 252, 0
• EVl::N

.ENA8L LSB
DIAGIIIO:

MO'i #MOD",UPP.CWR set proper PPI mode- LED
MOV 'LE:DOFF,i#PP.CwR I must 1mmed1ately be turned

off as a consequence.

CLR RO assume success

Perform parallel port d1agnost1c

CLR Rl Rl = loop pattern
8R AROUN2 ; SKIP OVER THE ENTRY POINT

KXTll-A2 lK FIRMwARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 45
HARDwARE ENTRY POINT

1 .SBTTL HARUwARI:; ENTRY POINT
2
3 172000 .=172000
4 172000 START::
~ 172000 000167 176254 JMP PwRSUP
6 172004 RESTAR::
7 172004 000107 176026 JMP k. SIRT

KXTll-A2 1K FIRMWARE MACRO V04.00 !I-OCT-81 22:56:27 PAGE 46
DIAGNostICS-CONTINUED

1 .SBTTL DIAGNOSTICS-Continued
2 172010 AR(JUN2:
3 172010 110137 176202 1$: MOVB R1, UPP.B send 1t out port B
4 172014 123701 176200 CMPB i.PP.A, Rl check 1nput 1n port A
5 172020 001402 BI::Q 2$ branch 1£ same
6 17:.l022 052700 000001 BIS fE.PAR, RO else set error flag
7 172026 017110 2$: SOB IU, 1$ loop for all values
6
9 Perform SI..U 2 d1agnost1c

10
11 172030 012702 171742 MOV 'ERRsn, R2 R2->error flags
12 172034 012701 176540 MOV 'I<CSR$2, Kl R1-> SLU2
13 172040 016146 000002 MOV :diU), -(SP) Ignore garbage, make temp
14 172044 012704 171750 MOV UNITS, H4 R4->1n1tial XCSR value
15 172050 014461 000004 3S: MOV -(1<4), 4(1<1) inlt XCSR
16 172054 001430 BEQ 11$ brancl'! 1f done
17 172056 00!:i742 TST -(1<2) R2->next error tlag
18 172060 01271b 000010 MOV .8., (SP) (SP)=baud rate counter
19 172064 012703 1717!:i0 4$: MOV 'PATERN, .R3 R3->patterns
20 172070 005005 5$: CLR R5 1n1t t1meout counter
21 172072 105761 000004 6$: ISIS 4(R1) loop pattern around
22 172076 100402 BMI 7$ branCI'! 1t ready
23 172100 077504 SOB 1<5, oS else bump t1meout counter
24 172102 000422 BI< 10$ brancl'! 1f t1meout
25
20 172104 111301 000006 7$: MOVS (R3), b(lH)

0 27 172110 005005 CLR R5 1n1t1a11ze t1meout counter
I 28 172112 105711 8S: TSTS (R1)

..J:>. 29 172114 100402 BMI 9$ DraneI'! 1f ready 00
30 172110 077!103 SOB 1<5, 8$ else Dump t1meout counter
31 172120 000413 ilR 10$ branch 1f timeout
32
33 172122 120113 000002 9$: CMPS 2(R1), (R3) come back OK?
34 172126 001010 StiE 10$ no, set error bit & ex1t
]!I 172130 105723 TSIB (R3)+ done all bit patterns?
30 172132 001356 BtiE !IS no
37 172134 005316 DEC (SP) ye5, done all bauds?
38 17:.!130 001744 BEQ 3$ yes
39 172140 002701 000010 000004 ADD flO, 4(1<1) no, to next baud rate
40 172146 000740 BI< 4$
41
42 172150 051200 10$: 8IS (R2),1<0 set error blt
43 172152 005726 11$: TST (SP)+ r1d of temp
44 17 2154 004707 177472 CALL OCTSTO pr1nt error flags
4~ 1721&0 000107 170516 JMP KBD$ and just get out.
46 .DSABL LSS

KXTII-A2 lK fIRMwARE
BOOTS-DESCRIPTION

1
2
3
4
5
6
7
8
9

10
11
12
1J
14
15
1b
17
18
19
20
21
22
23
24
25
26
21
28
29
30
31
32
33
34
35
36
31
38
39

000000

MACRO V04.00 5-0Cr-~1 22:56:27 PAGE 47

.SBTTL BOOTS-Description

,;;;;;;;,,;;;;;;;;;;;;;,;;;;;;;,;;;;,; Ii;;;;;;;;;;;;;;;;;;;;
II Ii;;;; I,;;;';i;;;; li;;:i;;;i;;;;;;,;;;;;;;;i;;;;; I;;;;;;;;
Ii;; ii;;
; ; ; ;
; ; ; ;

BOOTSTRAP ~ODULE ; ; ; ;
; ; ; ;

i;i;;;;;;;;:;;;;I;;;;;;;;:;;;;;;;;;;;;I;;;;;;;;;;;;;;; iii;;;
;;;;;;;;;;;;;:,:;;;;;;;;;;;;;;;;;;;;;:;;:;;;;;;;;;;;;;I;;;;;

.REPT 0

This Is a short bootstrap program designed to handle floppy disks or TU58
tape cassettes In either our standard boot able format or in the stand-alone
volume format (RT-I! ".SAV"-structured files).

The bootstrap sequence is as follows;

1. Since entry is etfected by typing D in response to OOT prompt, get next
character (0, X or ~). Get optional device number next (default is 0).

2. If floppy boot Is selected;

a. Attempt to read 512 bytes from specified unit of the floppy
disk, starting trom logical blOCk zero, into memory locations
star tiny at 0 at the densIty of the medium present In the
drIve at the tIme.

b. If tne drive is not ready or does not contain a bootable
medium, gO oack to OOT.

3. If TU58 boot is selected, read the first block from the selected
drive into locations starting at O.

4. If the first byte read into RAM is 240 octal, jump to it. If tne
first byte is 2bO octal, execute the stand-alone volume loader,
using the selected device as input.

.ENOR

tI
I

VI
0

KXTII-A2 lK FIRMwARE
BOOTS-DESCRIPTION

1
2
3
4
5
6
7
8
9

10
11
12
13 177170
14 177172
1::'
16
17
18 100000
19 040000
20 030000
21 004000
22 003000
23 000400
24 000200
2!> 000100
26 000040
27 000020
28 000016
29 000001
30
31
32
33 000001
34 00U003
35 00000::'
36 000007
37 000011
38 000013
39 000015
40 000017
41
42
43
44 000400
45 000200
46 000100
47 000040
48 000020
49 000004
50 000001
51
52
53
54 000010
55
56
57

MACRO V04.00 5-0CT-81 22:50:27 PAGE 4ij

l;i;;;;;;;;;II;;;:1;;;;;;;;;;;;;;;;;;;;;I;I;;;;;;;I;;; I;;;;;
iii;;;;;;;;;;;,;;;;;;;;;;;;;;;;;;;;;;;,;;;;;;,;,;;;;;;iii;;;
ii;; I;;;
I; ; ;
; ; fi

~QUATES USED ONLY BY BOOTSTRAPS ; ; ; ;
; ; ; ;

;;i1i;;;;;;I;;;;;:;;;;;;;I:;;;;;;;;;;;;;;;;;;;;;;;;;;; I;;;;;
; li;;;;;;;;;;;;;;;;;;;;;;;i;;;;;;;;;; ii;;;;i;I;;;;I; li;;;i;;

.S8TTL BOOTS-RX Controller Definitions

, RX01/kX02 (RXV11,RXV21) Reg1ster Def1n1t1ons

RXCS=
RXD8=

177170
RXC:H2

; RX Control and Status B1ts

RXSSER= 100000
RXUIN= 040000
RXUXA= 030000
kXSS02= 0040(}O
RXSSXX= 003000
RXSSDEz: 000400
RX$$Tk= 000200
RX$$U= 000100
RXSSDN= 000040
RXSSUN= 000020
kXS$FIII= 00001b
RXSSGO= 000001

;Control and Status
;Data Buffer

;Error
;In1t1al1ze controller
;Extended address b1ts
;1 1t RX02; a 1f RXOl
;Unused b1ts
;Density (1=double,0=single)
;Transfer function
;Interrupt enable
;Done
,Unit select
;function select
;GO

; RX Function Codes (in RXSSFN) with GO bit preset

RXSfIL= 0*2+RX$$GO
RX$EMF= 1*2+RX$$GO
kXSWRT= 2*2+RX$SGO
kXSkEU= 3*2+RX$$GO
RX$STD= 4*2+RX$SGO
RX$Rsr= ::'*2+RX$$GO
RX$wOD= 6*2+kXSSGO
RXSk~C= 7*2+RX$$GO

; RX Error Codes

RXf;SUN= 000400
kXESUk= 000200
RXE;$DO= 000100
RXI::$vN= 000040
RXESDE= 000020
RXIo.SID= 0000114
RXESCR= 000001

; Miscellaneous Definitions

RETRY= &.

;Fill Duffer
JEmpty buffer
;write sector
JRead sector
;Set media density
;kead status
;write sector with deleted data
;~edd error code

;Unit selected
JDrive ready
;Oeleted data
;Drive density
;Density error
;Initialize done
;CRC error

;Number of retries

.S8TfL ijOOTS-IU58 Definitions and Protocol Equates

0
I

Vl

KXTI1-A2 1K FIRMwARE MACRO V04.00 5-0CT-81 22:56:21 PAG~ 48-1
BOUTS-TU58 DEFl~IT10NS AND PROTOCOL EQUATES

58
59
60
61
62
63
64
65
66
b1
68
b9
10
71
72
73
74
75
76
17
78
19
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
lOb
101
108
109
110
111
112
113

000002

001000

176540
176542
176544
17b546

000001
000002
000004
000020
000023

000000
000001
000002
000003
000004
000005
000006
000001
000010
000011
000012
000013
00010U

000000
000001
171776
177770
177767
177765
177757
177740
177737
177720
177711

; Absolute address aefinitions

FILNAM = 000002

DIRBUF = 001000

; TU58 Address definit10ns

TISCSR
Tl$B~R

TO$CSk
TOSBFk

= RCSRS2
= KBUF$2
= XCSRS"
" lIBUF62

TU58 Radial Serial Protocol codes

Flag Byte Definitions:

RUDAT
R$$CTL
R$$lhT
RSSCUN
RUXOf

= AB<OOOOl>
= AB<00010>
= AB<OOlOO>
= AB<10000>
= AS<10011>

; Control pacKet operation codes:

RSNOP
R$INIT
RSRE-AD
R$1WIH T
RSCOMP
KSPO:;l
R$ABRT
RSDlAG
RSGElS
kS5ETS
RSGElC
RSSETC
RSEND

= o.
= 1.
= 2.
= J.
= 4.
= 5.
= 6.
= 7.
= 8.
= 9.
= 10.
= 11.
= AB<OlOOOOUO>

; END packet success coaes:

SSNORM
SSkETR
SSPAR'I
SS ut'il T
SSCAR'I
ShPf<T
SSDCHK
S$SEEK
S$M01'"
I)SOPCD
SSRECN

= o.
= 1.
= -2.
= -8.
= -9.
'= -11.
= -17.
= -32.
= -33.
= -48.
" -55.

Address of RAD50 filename for
stdna-alone program loading

Start of 512. word buffer used
for RX-l1 directory operations
in stand-alone loading

;DL receiver control and status
;OL receiver data buffer
;DL transmitter control and status
;DL transmitter data bufter

;Data message flag
;Control messaye flag
;Ini tial1ze flag
;Continue 11ag
;XOFF

;No-operation
;lnitiallze
;Read operation
;write operation
;Compare (NOP on TU58)
;Position operation
;Abort (NOP on TU5S)
;Dlagnose
;Get status
;Set status (Nap on TU58)
;Get cnaracteristics
;Set cnaracteristics (NOP on TU58)
;*END lIIessage

;Normal success
;Success but witn retries
;Partial operation (end of medium)
;Invalid unit number
;No cartridge
;Cartridge write protectea
;Data Check error
;SeeK error (block not found)
;Motor stopped
;lnvalid operation code
;Invalia record nUlllber

114 .SBXTL BOOTS-RTll Detinitions and Equates

9
VI
N

KXTII-A2 lK FIRMWARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 48-2
BOOTS-RT11 DEFINITIONS AND EQUATES

001000
001002
001004
001006
001010

000016
000010
000400
001000
002000
004000

; kT-l1 Directory Structure Definit10ns

SE:GALO
NXTSEG
HIiHSEG
XTRflXT
STR8LK

~NTSIZ

D.HEti
Tl:.NTA$
I:.MPTY$
PERMf"$
E:NDSGS

:: DIRBUF
:: DIR8UF+2
:: DIkBUF'+4
:: j)IRBU~'+6

:: DIRBUF+I0

:: 7*2
:: 10
= 000400
= 001000
= 002000
= 004000

;Number of segments allocated
;Number of next log1cal segment
;H1ghest segment in use
;Number of extra bytes per entry
;Starting block. for f1les
• 1n thiS segment
;Size of a directory entry
;Offset to f1le length 1n entry
;Flag for tentative file entry
;Flag for empty area entry
;flag for permanent f1le
;Flag for end of segment

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

; RT-11 System Communications Area Defin1t1ons

000040
000042
000044
000046
000050
000052
000053
0000S4
000056
000057

R'l:SSTA
kT$lSP
RUJSW
RT$USR
RTSHGH
RTSEMT
RT$uER
RTSRMN
R1'$FCH
RTSfCT

= 000040
= 000042
= 000044
= 000046
= 000050
= 000052
= 000053
:: 000054
:: 000056
:: 000057

;Start address for program
;Initial stack pointer
iJob status word
;USR load address
;JOb h1gh memory limit
;(~yte) EMT error code
;(Byte) User error code
;Base address of res1dent monitor
;(Byte) Console fill Character
;(Byte) Console fill count

KXT11-A2 1K fIRMWARE MACRO Y04.00 5-0CT-81 22:5b:27 PAG~ 49
BOOTS-PROGRAM ENTRt POINT

1
2
3
4
~

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 172164
26 172164
27
28
29
)0
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

172172
172172

172171>
112200
172204
172210
172212
172211>
172222
172224
172230
172132

172231>
172242
172241>
172250
172254
172256
172260
172262

172261>
172270
17,2274
172300

012737 000072

010667 175566

005004
004767 177304
120227 000104
001412
012704 000200
020227 000130
001405
020227 000131
001402

004767 177246
022702 000015
001410
162702 00001>0
001405
005302
001402

005204
1104&7 175474
0057&7 175470
100002

176544

.SBTTL BOOTS-Program entry polnt

i;;;;i;;;;;;;;;III,;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;I;iiI;;;
11;;i;;;;;;;;I;I;I;;;;;;;I;;;;;;;;;;;;;;;I;;;;;;I;I;I; I;;;;;
; ; ; ; ; ; ; ;
I;;; BOOTSTRAP INITIALIZAtION AND COMMAND INTERPR~TER I;;;
; ; ; ; , , , ,
;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;;;;;;iii;;;
;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;

A '0' was entered ln response to the ODT prompt, so we get
here and expect 'D','X' or 't' next, followed by a CR or a
unit number. we set b1ts up 1n ~.CNTL as tollows;

SIT 7: 0 = TU58
1 = I<XOI/D:l
Used by stand-alone volume loader to select proper
read routine.

SIt 0: Device number

hotel if no memory was found at 000000, b1t 15 of B.CNTL,
called "NO.LOW" will be set and the bootstraps w1ll be
d1sabled.

BOOTS:I
MOV 'TUBAUD,~#TO$CSR ;Set TU5S Baud Rate

; Jump here with 001 if booting russ's at other than default baud rate

Sl'TUI;D; ;
MOV

1$:

2S;
3$:

CLR
CALL
CMPB
BEQ
/oIOV
C~P
BEQ
CMP
BEQ
ABORT

CALL
CMP
BEQ
SUS
BEU
DEC
BEQ
ABURT

INC
MOVS
TS1'
SPL

SP,IN.USR

1<4
GETCHR
R2,#'P
1$
#DEVBl'I,R4
R2,.'X
1$
R2,#'l'
1$
<Illegal device name>

GI::TCHR
115,1<2
3$
"0,1<2
3$
R2
2$
<Illegal unit number>

R4
R4,S.CNlL
tI.CNTL
4$

;Perm1t HALTs and BREAKS
; by making IN.USR non-zero
;Assemole new B.CNTL here
;Keyboard character 1n R2
;00 = TU~S cassette
,R4 is clear for DO
;R4 bit 7 15 set for OX, Dt
;DX = RX01 or RX02
;DX = RXUl or RXU2, the code's

the same- it knows ooth den­
s1ties, DMA, non-DMA

;Get device number or CR
;Is it CR1
;CR means drive 0
;Drive 01
IYuP.
;Drive 11
;l'es, skip the ABORT

for un1t 1.
set device, unlt information.
Test NO. LOW
we have low memory
we don't, so go to UDl

KXT11-A2 1K FlRMwARE MACRO V04.uO 5-0CT-81 22:56:27 PAGE 49-1
-----> HALT AT PC=172264 INDICATES "ILLEGAL U~IT NUMdEk"

58 172302
59
60
61
62
63
b4
65
66 172306
67 172314
68 172322
69
70
71
72
73
74
75
76 172324
71 172336
78 172342
79
80 17234b
81
82 172352
83 172354
84 172360
85
86 172362
87 172364
88 172366
89
90 172370
91 172370
92 1 "/237'<

012737
012737
000005

012706
010bb7

012716

010402
042702
01024b

10!i704
100405
00043b

012706

172370
000300

167644
175430

037716

177176

167644

000004
000006

ABORT <No low memory, can't boot>

Before proceeding, we set up the bus timeout trap vector, enable
trap to 4 emulation and reset the bus. we dO a delay (see
explanation below) and set up the stack so the stand-alone booter and
device primary bootstraps can get the information they need passed
to tnem in kO and k1 (see CHK240, below).

4$:

BADBOT:

HOV
HOV
RESET

.BADBOT,~f4

,PIU6,Ub
JIf we time out, we want to re­
Jinitialize everything.
JFor now, inlt. the bus.

Note: the previous instruction also screws up some devices
whlcn perform a long initialization sequence, such as RXu2's,
wnich do an automatic boot from drive O. The long delay below
Is necessary In order to assure drive 1 is ready if a boot
1s desired trom it.

DELAY
1010°1'
MOV

MOV

MUV
BIC
HUV

TSTB
BMI
BR

MOV
ABORT

kO,R1,9.
fSSTACK,SP
SP,TRAP4

'31776, (SP)

R4,R2
.ftC<DE.~~UH>,R2

R2,-(IjP)

R4
ilXBOOT
rUSOOl

;Delay 2 seconds
;Initialize the stack.
;Set up trap-to-4 emulation
;by maKing TRAP4 non-zero
;Some boots need a memory-top
; address here, so 8k will do
;Boot control word here
;Want only unit no. in R2
;And we'll save it too.

JBit 7 set for RX01/02
;Go to floppy boot
;Go to TUS8 boot

'$$TACK,SP ;Restore the stack
<Unexpected timeout during boot>

t:i
I

Vl
Vl

KXT11-A2 1K FIRMWARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 50
BOOIS-RX01/RX02 BOOTSTRAP

1
2
3
4
~

6
7
8
9

10
11
12
13
14 172400
15 172400
16 172404
17 172410
18 172412
19 172416
20 172420
21 172422

01274&
005737
000240
012701
OO~ooO
005004
0047&7

177170
177170

001000

000402

.SBTIL BOOIS-RX01/RX02 Bootstrap

ii;:;;:;:;;:;:;;;;;;;;;:;,;:;:;;;,;;:;:;:;:;;;;;;,;;;;Ii;;;;
ii;;;;;:;;;;;;;;;:;;;;;;;;;;;;;;;;:;;;;;;;:;;;:;:;;;;;iii;;;
; ; ; ; ; ; ; ;
, , , , FLOPPY BUOTSTRAP , , , ,
, , , ,
i;;;;;;:;;;:;;;; iii;;;
i:;;;:;:;;;;:;;;:;;;;;;;;;:;;:;;;;;;;;;;;;;:I:;;;;;;;;iii'i:

; Ihis routine w1ll bootstrap either floppy drive, at the density of the
; media mounted 1n that drive.

RXBOOT:
MOV
lSI
"OP
MOV
CLR
CLR
CALL

.RXCS,-(SP)
iHRXCS

'512.,R1
RO
R4
DREAD

;Need floppy CSR tor CHK240
;1£ not there, time out via 4
Ito ST173 and reset the worla
;Byte count
;Starting bloCK number
;RAM buffer address = 000000
;LOAD IT ALL IN

t:J
I

VI
0\

KXT11-A2 lK FIRMWARE MACRO V04.00 5-0CT-ij1 22:56:27 PAGE 51
aODTS-DISTINGUISHING TIP~ OF BDOT BLOCK

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17 172426
18 172426 022737 000240 000000
19 172434 00141 0
20 172436 022737 000260 000000
21 172444 001447
22 172446 004767 1757b6
23 172452
24
25 172456 012601
26 172460 012600
27 172462 OO!)O07

.SBTTL BOOTS-Distinguishing type of boot blocK

;,; Ii;;;; Ii;:;;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;:;;:;:;;;;;;;:;;; iii;;;
, , , ,
, , , ,
; ; ; ;
; ; ; ;

DISTINGUISH STANDARD FROM STAND-ALO~E fROM
Nuh-~OOTABLE VOLUMES.

; ; ; ;
, , , ,
, , , ,
; ; ; ;

;;;;;;;;;;;;;;;; I;;;;;;;;;;;;;;;;;;;;;;;;;;; I;;;;;;i;;;;;;;;
;;;;;;;;;;;:;;;;;;;1;:;1;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;il;;;:

The CHK240 routine will repeat powerup sequence If location 0 does not
contain a valid secondary Dootstrap (i.e., does not nave a 240 or 260
in it). It starts execution of tne booted program if tnere's a 240,
and goes to tne stand-alone program loader if there's a 260.

CHK240:
CMP '240,HO ;Did we read a valid bootstrap1
BEY 1$
CMP '260,~#0
SEQ STANDB ;Stand-alone volumes start with
CALL V~CSE.T ;kestore wiped-out vectors
ABORT <NO DoOt blocK on volume>

1$: MOV (SP)+,IU Unit CSR address
MOV (SP)+,RO unit number
CLR PC Standard secondary boots

260

KXTII-A2 lK FIRMWARE
800TS-TU58 800TSTRAP

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
lEi
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

172464
112464
1724111
172414
172476
172500
172504
172506
172510
17:.l514
172516
112520
172522
17<:524
172::'30
172532
172536
172540

172544
172546
172552
172556
172560

012746
012701
005003
005211
004767
105711
100376
042711
012703

004
004715
005741
105737
100375
121127
001402

0050uO
012701
004767
100323

MACRO Y04.00 5-0CT-81 22:56:27 PAGE 52

176540
1765,,4

001132

000001

004

176540

000020

001000
000212

.S8TTL BOOTS-TU5S Bootstrap

,;;:;;:;;;;;;;;; iii;;;
:li;;;;;;;;;;;;I;I;;;;;;;;;;;;;;;I;;;;;;;;;;;;;;;;:;;; iii;;;
; ; ; ;
; ; ; ;
,; ; ;

TU58 TA~E CASSETTE BOOTSTRAP
; ; ; ;
; ; ; ;
; ; ; ;

;;;;;;;;;;;;;;;;;;;;;;;;;;;, I;;;;;;;;; I;;;;;;;;;;;;;;;;;;i;;
ii;;;;;;;;;;;;;:;;;;;;;;I;;;;;I;;;;I;;:;I;;;;;;;;;;;,;iii;;;

.ENABL LSB
TU800T:

MOY 1T1$CSR,-(SP) ~CHK240 wants TU5& CSR
MOY iTOSCSR,Rl ~Rl -> output CSR for TU58 serial
eLR R3 ~Set R3 = 0 (Two NULLS)
INC ilRl ~Start transmitting 8R~AK to lU58
CALL CHtiOUT ~Send eight NULLS

lS: TSTS ilkl ;Is transmitter ready agaln yet?
BPL 1$;It PL no - wait
BIC IXC.HRK,IllR1 ;Else stop sending 8REAK now
MOY (~CH,R3 ;Get two INIT commands for lU::'8
.SnE RSSlNT,RS$lNT
CALL fiiR5 ;And transm1t them
TSI' -(1'<1) ;Dump any garbage char in TISBUF

2$: TST8 IH'llSeSR ;15 character ava1lable from the
BPL 2S ;It PL, no - walt 1n loop
CMF8 i\Rl, fRSSCON ;If so, was it a CONTINUE fla\l?
IlEO 3$;It EO, yes- go anead
ABORT <'fU5t1 initial1zat1on error>

; lU58 is now 1nlt1al1zed. Prepare to read blOCK .0.

3$: eLR 1(0 ;!lloCk number = 0
p.;OV '512.,1'<1 ;Byte count = one blOCK
CALL READZU ;Attempt to read the blOCK
BPL ChK240 ;If PL, read was successful
A8URT <TU5ij block 0 read error>
.DSABL LSB

line

TU58?

KXTll-A2 lK fIRMWARE MACRO V04.00 5-0CT~81 22:56:27 PAGE 53
BOOTS-STANO-ALONE VOLU~E BOOTSTRAP

1
2
3
4
5
&
7
ti
9

10
11
12
13
14
15 172564
16 1725&4
17 172570
18 172572
19
20 172574
21 172600
22 172604
23 172&10
24 172612
25 172616
26
27 172622
28 172624
29 172626
30 172632
31 172634
32
33 172&40
34 172642
35 17264&
36 172650
37
38 172654
39 172660
40 112662
41 172664
42 172666
43 172670
44 172672
45
46 172674
47 172676
48 172702
49 172704
50 172706
51 172712

012700
006300
022020

012701
012704
004767
10U002

012704

01240U
010403
032724
001010
022744

001015
013700
001350

012705
022425
001004
022425
0010.02
022425
001410

010304
062704
062400
022424
063704
000744

000001

002000
001000
000162

001010

002000

004000

001002

000002

000010

001006

.S~TIL SOOIS-Stand-alone volume bootstrap

;;;;;;;;;;;;,';;;;;11;;;;;;;;;;;;;;;;;;;;1;;;;;;;;;;;; I;;;;;
;,;,;;;;;;;;;;;1;;;;;;;1;;;;1;;;;;',;;;;;;;;;;;;;;;;;;iii;;;
ii'; Ii;;
; ; ; I
; ; ; , STAND-ALaNE-VOLUME BOOTSTRAP , , , ,
;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;,;;;;;;;;;; iliii;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;',;;;';;;;;;;;;;1;;;;iii;;;

This routine loads stand-alone programs (assumed to be in RT-11 .SAV
; f1le format) from an RT-ll file structured TU58 cartridge. It 15
; invoked if the f1rst word in block 0 of the cartridge is a 2&0.

STANDS:

1$:

2$:

3$:

4$:

5$:

MOv
ASL
C,",P

MOV
MOV
CALL
BPL
ABORT
MOV

MOV
MOV
BIT
SNE
CliP

SHE
MOV
~NI::

ABOR"r

MOV
CMP
SNE
CliP
SNE
CMP
BEQ

MOV
ADO
ADD
CMP
ADD
BR

U,RO
RO
(ROH,(RO)+

111024. ,Rl
'DIR8Ut',R4
READU
2$
<Directory read error>
'STRbLK,R4

(R4H,RU
R4,R3
,PERMfS,(R4)+
4$
IENDSGS,-(R4)

5$
UNXTSEG,RO
1$
(File not found>

'fILNAM,R5
(R4H, (R5H
5$
(R4)+, (R5)+
58
(R4H, (RS)+
LOALl

R3,R4
iD.FLI::N,R4
(R4)+,KO
(R4H, (R4)+
UXTRBYT,R4
J$

;Set directory segment .1
;Two blocks per segment
;Add 4 to RO, as directory starts
; in block.&
;Prepare to read two blOCKS
;Into the directory buffer
;Read the segment
;If PL, read was successful

;Else prepare to p1ck up
; starting blOCK
IRO = starting block for files
;Save pointer to current entry
;15 th1s a permanent file?
;If bit set, yes - check if 1t matches
;Else 1s this the end-of-segment
; marker?
;If NE, no - go SKip this entry
;Else get numDer of next segment
;If HE, there is one - go read it

;Point to RAD50 name of desired file
;Check tile name, first word
11f hE not deSired file
; ••• ChecK second word of f1lename
;if NE not desired one
; ••• Finally, check extension
;If ~Q, got it - go load this
lone tnto memory
;Get entry pointer back
;Advance to file s1ze of entry
;Update current file base
;And Skip to next file entry
;Plus any extra bytes in each entry
;Continue file searcn

KXT11-A2 1K FIRMWARE MACRO V04.00 5-0C'r-81 22:56:27 PAGE 54
BOOTS-LOAD STAND-ALONE PROGRAM FILE

1 .SB'1'11. tlOOTS-Load Stand-Alone Program F1le
2
3 172714 011401 LUAlI: MOV f!lR4,R1 ;Rl = s1ze of f1le 1n blockS
4 172711> 000101 SWAB R1 ; • 256. = word count
5 172720 006101 ASL R1 ; • 2 = byte count
6 172722 004767 000042 CALL Rt:;ADZU ;Read tne program f1le 1nto memory
7 172726 100002 BPI. 1$; it Ill, error 1n read-ABORt
8 172730 ABORT <Stand-alone tHe read error>
9 172734 013705 000040 lS: MOV URT$STA,RS ;Get program start adrs

10 172740 032705 000001 SIT f1 ,R5 lIs adrs even?
11 172744 001402 aECol STARl'$;If EQ yes - okay
12 17274b ABORT <lllegal transfer address>
1l
14 172752 STARTS:
15 172752 012601 MOY (SP)+,Rl Pass the CSR address
16 172754 112600 MOVS (SP)+,RO Get unit number booted
17 172756 013706 000042 MaY \!I'RT$lSP,SP Load program's stack pointer
18 17:l762 00501>7 175010 CLR THAP4 D1sable trap to 4 feature
19 17~71>6 000115 JIIP li!R5 Go start program execut10n
20
21 172770 REAlIZU:
22 17~770 005004 CLR R4 Load at 0
23 172772 0161>02 000004 READU: MOV 4(SP),R2 Get un1t number
24 11').776 000407 BR AROUNl SKIP OVER TriE ENTRY POINT

t:l
I

VI
\0

9
0\
o

KXT11-A2 1K FIRMWARE
173000G ENTRl POINT

1
2
3
4 173000
!) 173000
I> 1"1300"
7 173006
8 173010
9

10 173012

173000

10b427
OOOOO!>
005000
077001

0001b7

MACRO V04.00 5-UCI-Bl 2~:56:27 PAGE 5!)

1>1'173::
000340

175242

.=173000

MTPS
RESET
CLK
SOB

JMP

.SBTTL 173000G ENTRY POINT

.PRI7

kO
RV, •

PI>RSIiP

can't assume anything here.
But PWRSUP usually does.
DELAY tor the saKe of VLART.
(Maint. bit cleared by R~SET
just a little too long).

U
I

0\

KXT11-A2 1K FIRMwARE
BOO'fS-COt'4'f INUED

1
2 173010
;; 1730lb
4 173022
~ 173024

105767
10040~

000167

MACRO V04.00 5-0CT-&1 22:56:27 PAGE 56

AROUN3:
174746

000370

TSTB
BMI
JMP

.SBTIL dUOrS-Continued

B.CNTL
DktAD
TRtAU

;Bit 7 set tor RX01/RX02
;Read from tape

0
I
0\
tv

KXTII-AZ lK FIkMwARE MACRO Y04.00 ~-OCT-81 22:56:27 PAGE 57
BOOTS-RX01/RX02 kEAD ROUTINES

1
2
3
4
5
6
1
8
9

10
11
12
13
14
15
16
17
18
19
20
21 173030
22 173032
23 173034
24
2~
26
27 173036
28 113042
29 173044
30 171046
31 173050
32 173054
33 173060
34 1730&2
35 173064
36 1730&6
37 173072
3ij 11307&
39
40
41
42
43
44 173100
45 173104
46 173106
47 173110
48 173112
49 173114
50 173120
51
52
53
54
55
56 173122
51 173124

010446
010046
010146

012701
005000
006002
103002
052100
004567
000013
111102
100402

032102
001411

052700
012602
000302
012&03
006303
012704
000410

012602
000302

177172

000020
000312

000040

000400

000200

.SBTTL aOOTS-RX01/RX02 Read routines

;;;;;;;;;;;,;;;;;;;;;;;;;;,;;;,;;;,,;;;;;;;;;;;;;,;;;;;;
;:;;;;;;;;:;;;;;;:,;;;"';1;;11;;;;';;;;;;;;;;;;;;;,;;;i
; ; ; ;
;1n FLUPPY DISK READ ROUTINES
, , I ,

i;;i:;;;;;;,;;;;;;:;;;,,;;;;;;;;;,,;;;;;;;,;;;,,;;,,:; ;;
;;;';ii'i;;;;;;;",,;;;;,;;;;;;;;;,;;;;;;,;;;;;,;;;;,; ;;

with registers set up a5 below, read the appropriate number of
full sectors from the floppy, at either density, with either
RXY2I DMA or RXYll Programmed I/O interface.

RO: Starting block number for transfer.
RI: Byte count for transfer
R2: Unit number
R4: Address of buffer to receive data

.ENIIBL LSB
DRt.AD: MOV

MOY
MOY

R4,-(SP)
RO,-(SP)
R1,-(SP)

;Save buffer address
;Save starting LaN
;Save byte count

Check status and media density of selected drive

1$:

2$:

MOY
CLR
ROR
BCC
8IS
JSR
.WORD
MOYtI
BMI
ABOIIT
lilt
BEQ

.RXDB,Rl
RO
R2
1$

.RXUUN,RO
R5,RXGO
RXSRST
f!lRl,R2
2$
<Floppy drive not
.RXE$DN,k2
3&

Double density.

ready>

;Set UP Rl for benefit of RXGO
;Initlalize current unit/density word
;Bit 0 set = unit 1

;Set unit 1
;Start a read status operation
; to determine status and density
;Pick up low byte ot status
;If P~, drive not ready

;Check media density
;If EQ, single density

Logical sector number = logical block number * 2
Sector count = byte count/2~6.

BIS
MOY
SUB
MOY
ASL
MOV
BR

'RX$$DE,RO
(SI?)+,R2
R2
(SP)+,R3
R3
U21l.,R4
4$

Single density.

;Set double density in command
;Byte count
;Divide by 256
;LBN
; Hul tlply by 2
;words per sector

Logical sector number = logical block number * 4
Sector count = byte count/128.

3$: MOV
SWAB

(SP)+,R2
R2

;Byte count
;Divide by 256

KXTll-A2 1K FIRMWARE MACRO V04.00 b-OCT-81 22:56:27 PAGE o b7-1
-----> HALl AT PC=173070 INDICAT~S "FLOPPY DHIVE NOT REAUY"

58 173126
59 173130
60 173132
61 173134
62 173136
63
64
65
66
67
68
69
70 173142
71 173144
72 173146
73
74
7b
76
77 173150
78 17315.4
79

006302
012603
006303
00b303
012704

010446
010246
01034b

004567
000007

000100

000216

ASL
1010
ASL
ASL
MOV

R2
(SP)+,R3
R3
R3
'64.,R4

Set up staCK as follows:

4$:

O(SP) = Log1cal Sector Number
2(S~) = Sector count
4{bP) = words per sector
6(SP) = Butter address

MOV
MOV
MOV

R4,-(SI')
R2,-(SP)
R3,-(bP)

; start the read operation.
; This is the top of the loop.

5$: JSR
.1i0RD

R5,RXGO
RXSf(EO

;And multiply by 2
;LBN

;MUltiply by 4
;words per sector

;words per sector
;Sector count
;Log1cal Sector Number

;Start a sector read

80 Convert Log1cal Sector Numbers to Physical tracks and sectors.
81
82 173156
83 173160
84 1731b4
8b 173170
86 173172
87173176
88 173200
89 173202
90 171204
91 17320b
92 173210
93 173212
94173:.!1iI
9b
96 173220
97 1132.,2
98 173224
99 17322b

100 173230
101 173232
102
103 173234
104 173240
105 173242
106
107
108
109 173246
110 173250
111 173252
112 173254
113 173256
114 173260

011603
012702
022703
101002
062703
006103
005302
003370
110302
105003
000303
022703
006103

006302
060203
060203
060203
006202
005202

162703
002375
062703

010311
004514
010211
00451<,\
100002

000010
006400

171400

000014

000032

000033

6$:

H$:

MOV
MOV
CMP
BHI
ADD
ROL
DEC
BGT
MOYB
CLRB
SWAB
CHI'
ROL

ASL
ADD
ADD
ADD
ASR
INC

SUB
BGE
ADD

(fSP,R3
#8.,R2
.26.*200,R3
7$
'-26.*200,H3
R3
R2
6$
R3,R2
R3
R3
112.,R3
R3

R2
R2,H3
1<2,R3
R2,Rj
R2
R2

'26.,Rl
8$
.27.,R3

Head the sector

MOV
.JSR
MOV
.JSR
BPL
ABORT

k3,(fR1
R5,(fR4
f<2,(fkl
RS,rpH4
9S
<FloPpy read error>

;Get Logical Sector Number
;Loop count
;Does 26 go into div1dend?
;Branch 1f not, C clear (SHI => BCC)
;SuDtract 2b from dividend (C set)
;Shift dividend and quotient
;Decrement loop count
;Branch till div1de done
;Copy traCK number
;Remove traCK number from rema1nder
;Get rema1nder
;C=l 1f 13<=R3<=25, else C=O
;Sector*2 (2:1 interleave)
;[+1 (Cl 1f sector 13-25J
;Double the traCK number
;SKew the sector
; by adding 1n
; 6 * traCK number
;Undouble tne tracK number
; and maKe it 1-76 (Sk1p traCK 0
; tor ANSI)
;Put sector

1nto ranQe
1-2b

Set sector number

Set traCK number
Perform a sector read
If MI, error

KXT11-A2 1K FIRMwARE MACRO V04.00 5-0CT-81 22:56:27 PAG~ 58
-----> HALT At PC=113262 INOICAT~S "FLOPPY R~AO EH~OR·

1
2
3 173264
4 173270
5 173272
6 173300
7
8
9

10 173302
11 17330b
12 173310
1317J314
14 173316
15
16
17
18 173320
19 173324
20 173326
21 173332
22 173334
23 173336
24
25
21'>
27 173340
28 173344
29 17334b
30 173H2
31 1733H
32 17336U
33 173362
34 17331>1>
35
31'> 173370
37

004567
000063
032737
001407

016611
004514
016611
004514
OOCl410

0161'>03
006303
016602
111122
00451.4
077303

016603
006303
060366
005216
005366
001273
062706
000257

000207

000102

004000 177170

000004

000006

000004

000006

000004

000006

000002

000010

, Empty RXV11/RXV21 buffer into HAM

9$: JSI<
.wORD
!:lIT
B~Q

R5,kXGO
RX$EMf
.RX$$CI.2,@,RXCS
10$

RX02 DMA Operation

MOV 4(SP),~Rl

JSR R5,@R4
MOV 6(SP),.Rl
JSR R5,@R"
ElR 12$

, RX01 programmed 110 Operation

10$:

116:

MOV
ASL
MOV
MOVB
JSk
SOB

4(SP),R3
R3
b(SP),R2
@1<1, (H2)ot
R5,@H4
1<3,11$

, Loop back if not yet tinlsned

12$: MOV
ASL
ADD
INC
D~e
SNi
ADD
ecc

RETURN
.OSABL LSb

4(SP),R3
R3
R3,6(SP)
@SP
2(SP)
!:IS
'd.,SP

Start empty buffer function
and wait for TR

Is DMA availa~le?
If EQ no - handle as RX01

;Else load word count
; Wait for TR
lAnd load current bus addre~s
;wait for DONE

;Get word count
;Turn word count into byte count
;Get starting bus address
;Move one byte from buffer to memory
;Wait for TR or DONE
;Loop for all bytes in first sector

;Get word count
;Turn into byte count
;Update bus address
;Update Logical Sector Number
;Decrement Sector Count
;Read another sector
;Pop the stack
;Clear condition codes
; to show success.
; All done

KXTI1-A2 1K FIRMWARE MACRO V04.00 5-UCT-81 ~l:56:27 PAGE 59
-----> HAL! AT PC=1732b2 I~DICATES "FLOPPY REAL ERRUR"

1
2
3
4
5
6
7
8
9

10 173312
11 173314
12 173316
13 173402
14 173404
15 173406
1b 113412
17 173414
18 173416
19

012504
050004
010431
010104
005141
032111
001775
005721
000205

177170

000240

The main subroutine tor sending disK commands and waiting tor
their completion.

Register usage:

RXGO:

U:

RO = density bit I unit select bit (proto for commands)
Rl = RXDB address
R4 = kXGO TH/DONE test routine pointer

MO~

815
MOV
MOV
TST
BIT
BE.Q
TST
RTS

(R5)+,R4
RO,R4
R4, i\fRXCS
PC,R4
-(Rl)
'RX$$TRIRX$$DN,~Rl
1$
(R1)+
R5

;Copy command word to uSe
;Set unit • and density
;Start operation
;Copy adrs tor later calls
;RI -> RXCS
;wait tor TR or DONE
;It EQ, neither are true yet
;Reset HI -) kXDB and cnecK.tor
;Return to caller

errors

KXT11-A2 lK FIRMWARE MACRO V04.00 5-0CT-81 22156:27 PAGE 60
BOOTS-TU~8 READ ROUTINES

1
2
3
4
5
6
7
B
9

10
11
12
13
14
1~
1&
17
18
19
20
21
22
23
24 173420
2!:! 173422
26 173424
27 173430
2tl 173434
29 173440
30 173442
31 173444
32 173446
33 173450
34 173452
35 173454
36 173456
37 173460
38 173462
39 173464

010446
005004
012703
0047&7
012703
004715
010203
004715
005003
004715
010103
004715
010003
004715
010403
004715

005002
000206
000002

.S8TTL BOOTS-TU58 Read routines

; Ii;;;;;;;;;; Ii;; 'i;;;;;;;;i Ii Ii li;i;;;i;;;;;;;i;;;;;;;;;;;;
; ;" ;
; ; ; ;
; ; ; ; TU58 DEC tape 11 READ ROUTINES

;;;;
;; II

ilii ; ; ; ;
;;;;;;i"';';;;;;;;;;;;;;;;;;;;;;;;;;';;;;;;;;;;';;;;;iii;;;
ii;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;i;;i;;

Starts a read operation on the TU58 by transmitting a command packet

Inputs:
RO = starting blOCK • for transfer
R1 = byte count for transfer
R2 = unit numoer
R4 = aodress at buffer to receive data

Outputs:
RO, R1, R2 unchanged

De5troys:
R3, R4, R5

.ENABL LSB
TREAD: MOV

CLR
MOV
CALL
MOV
CALL
MUV
CALL
CLR
CALL
MOV
CALL
MOV
CALL
MOV
CALL

R4,-tSP)
k4
fl0.*400+R$$CTL,R3
CH20UT
'R$REAIJ,R3
!ilR!:!
R2,R3
iPR5
R3
!ilR5
Rl,R3
iRS
RO,R3
!!IR5
R4,R3
\!IRS

;Save buffer address
;Init cheCKSum
;Set commana tlag and length
;Output two chars ana set R5
;Send read command and moditier=O

;Then un1t number and sw1tches=~

:Plus a zero sequence number

:followed by the byte count

;And the blOCK number

;Finally, transmit the checksum

KXTII-A2 lK fIRMWARE MACRO V04.00 5-0CT-81 22:56:27 PAGE 61
BOOTS-TU58 READ kOUTINES

1
2
3 173466
4
5 173470
6 173472
7 173476
8 173502
9 1735u4

10 173506
11 173510
12 173!)12
13 173514
14 173!116
15 113522
Ib 1735:.14
11 173!>:l6
18 173532
19
20 173534
21 173!>36
22
23 173542
24
2~ 173546
26 173552
27 173554
28 173560
29 173562
30 173!>66
31 173572
32 173574
33
34 173576
35 173602
36 17 3604
37 17360b
38
39 173612
40
41 173614
42 173616
4J
44 173620
45 173b22
46 173624
47 173630
48 173632
49 173&34
50

0121>00

u06001
004767
122703
001017
105003
000303
1060u3
1b0301
010305
004767
U10320
077504
004767
005701

001351>
00471>7

004767

122703
001402

010300
0047&7
004767
00u300
000207

0047b7
020403
001402

000207

005004
000402

004717
004717
004767
060304
005504
000207

000116
000001

000102

000044

000052

00005&

000100

000032
000004

000064

00003&

Now ready to accept aata ~essages from the TU58

1$:

2$:

4S:

5$:

bS:

MOV
CLC
ROR
CALL
CMPB
BNE
CLRB
SWAB
ROkB
SUB
MOV
CALL
MOV
SOB
CALL
TST

SNE
CALL

CALL

CMPB
BEQ
ABORT
MOV
CALL
CALL
SWA8
RETURI-4

CALL
CMP
BEQ
ABORT

RETUR~

7S: CLR
BR

8S: CALL
CALL

9$: CALL
ADD
ADC
HETURI-4

.DSA8L LSB

(SP)+,RO

R1
7~

'RaSDAT,H3
36
R3
R3
K3
R3,R1
R3,R5
9$
R3, (RO)+
R5,2&
56
R1

1$
7$

9$

fR$Et.D,R3
4$

;RO -> data buffer
;(CH20UT leaves C clear)
;1<1 = word count for transfer
;Get first word of packet
;15 this indeed a data message?
;It NE no - may be END message
;Else clear flags
;Move pacKet byte count to low byte
;And convert to word count
;Remove trom transfer count
;And copy for loop counter
;Get next two words
;Store 1n Duffer
;Loop for ent1re data message
;Get checksum and compare
;Have all data records been
; transferred?
; If HE no
;And get prospect1ve
; END packet start
;Get opcode/success bytes
; ot END packet
;Is this an ~ND packet?
;It NE no - AbORT

<TU5S END packet
R3,1<0

m1ss1ng>

8S
5$
1<0

CH2H.
R4,1<3
6$
<TU58 Checksum error>

R4
g$

(!I PC
(!I PC
CH2IN
R3,R4
R4

;Save success code In R~
;Read rema1nder ot ~ND packet
;And cheCk its checksum
;Set CC's on success code of transfer
;Return to caller

;Get two CheCKsum bytes
;Does it match calculated value?
lIt NE no - ERROl<

;Else return with success

;In1t checksum
;And get the f1rst word

;Read 4 words

Read next two bytes
Add 1nto checksum

with end-arouna carry
And baCK to caller

9
0'1
00

Kxr11-A2 1K FIRMWARl MACRO V04.00 5-0CT-81 22:56:27 PAGE 62
••••• > HALT AT PC=173610 INDICATES "TU58 tH~CKSUM ERROR"

1
2
3
4
5
6
7
8
9

10
11
12
13 173636
14 173636
1!1 173640
16 173642
17 173642
18 173644
19 113b46
20 173650
21 1736!!2
22 173656
23 173660
24 173664
2!!
26
27
26
29
30
31
32
3J
34 173666
3!! 173670
36 173672
37 11367&
39 173700
39 173704
40 17370&

004717
004717

01070!!
01>0304
005504
004717
10!!737
10037!!
110337
000407

004717
105003
105737
100375
153703
000303
000207

176544

17654&

176540

176!!42

CH20UT •• Write two bytes to the TUS8

~rites two bytes to interface and updates checksum.

Inputs:
R3 = two bytes to be output; low byte first
R4 = current checksum word

Outputs :
R3 unchanged
R4 updatea to new cheCksum
R5 pointing to CH20ur routine for easier future CALLs

CH80UT:

Ch20UT:

lS:

CALL
CALL

MOV
ADD
ADC
CALL
TS1'b
BPL
MOVB
6R

ilPC
ilPC

PC,RS
fd,R4
R4
ilPC
iHTOStSR
1$
R3,ilI'lOSBFR
CtIRE'l'

;~ntry p01nt to output 8 characters

;Set R5 to following routine adrs
;Update checksum word
; with end·around carry
;Repeat for both Characters
;Is interface ready for output?
;If PL no • wait
;Else transmit character to rUSy
;Merge with other routine to return

CH2l1'1
ChIlli

Read two bytes from the TUS8
Read a single byte from the TU58

Inputs:
none.

Outputs:
R3 = character(s) read

Ctl2IN:
CtIIN:
1$:

CtlN!:;T:

CALL
CLRS
TSIS
BPI.
81511
SWA8
RETORN

"PC
R3
UTlSCSR
1$
taU'IS8f'R,IU
113

;Read two, not one
lAnd zero out space for new one
;15 a cnaracter available1
;It PL no
;Else set into register
;Move current Character over
;And return to caller

9
0\
\0

KXT11-A2 1K FIRMWA~E
END STATlMEl'4T

1
2 000001

MACRO V04.00 5-0C1-81 22:5&:27 PAGE 63

.SBTTL lND STATEMENT
.lND

KXT11-A2 lK FIRMWARE; MACR!.J VOlt.OO 5-oCT-81 22:56:27 PAGE &3-1
SYMBOL TABLE

AROUN2 172010 E.PAR = 000001 PP.t!l6; 000014 RTSUSR= ()00046 R.PC = 16771>1> G
AROUN3 173010 FAKOUT 170424 PP.BI7= 00001& RXBOOT 172400 R.STAK= 000001
AUTOBA 170472 G FILNAM= 000Oll2 PP.C = 17&204 RXCS = 177170 f<.1'YPE= 1&7762 G
BAD BOT 17237u GI::TCHR 171510 PP.CHI= 000010 RXOB = 177172 R.STRT 170031> G
BAUOkS= 000032 GETNuM 171&12 PP.CLO= 000001 RXE;SCI\= 000001 ,sAVPC = 167752 G
BO.003= OOOOO() HGHSEG= U01004 Pi'.CWR= 176201> RXESOO= 000100 SAVPS = 11>7754 G
BO.006= 000010 IiKBOQ 171140 PP.DflA= 000020 RXESOE= 000020 SI::GAuO= 001000
BO.012= 000020 HKBD$ 171142 Pi'.DRIl= 000002 RXESDN= 000040 I:;PACE = 000040
BO.024= 000030 HVBAUD 170556 PP.PlDA= 000040 RXESOR= 000200 SRET 17160$&
BO.048= 000040 IN8YTE 170550 .. P.II0S= 000004 RXE$lD= 000004 STANDS 17251>4
80.09&= 000050 INBYTS 17055& PP.M1)2= 000100 RXESUN= 000400 STAR1' 17J000 G
BO.192= 0000&0 hIlS 171750 PP.MOO= 000;l00 RXGO 17337:l STARTS 172'152
BO.384= 00Cl070 IN.USR= 1&n1>4 G PRINT 17070& RXSEMP= 000003 STRbLK= 001010
BITO = 000001 KBDQ 170&74 PRI& = 000300 RXSFIL= 000001 ST'l'UBD 172172 G
BITl = 000002 KBDS 170702 PRI7 = 000340 RX$REC= 000017 ST173 173000 G
BITI0 .. 002000 LCSET 17124& PUTCHR 171522 RXSRED= 000007 SWCMD 17121;t
BITll .. 004000 LEDOFF= 000017 PUTCLF 171554 RX$RST= 000013 SSCART= 1n707
BIT12 = 010000 LF = 000012 PUTuF 1715&4 Rl!.SSTD= 000011 SSDCHK= 177757
BITU = 020000 LOAD 172714 PUTSrR 171542 RXSWUD= 000015 SSMOTR= 11"1737
BIT14 = 040000 LOCDSP 171252 Plr/RSUP 17021>0 G RXSWRT= 000005 SSNORM= 000000
BIT1!> = 100000 MODE = 000221 QOOT 170&&b RXSSDE= 000400 SSOPCO= 177720
BIT2 = 000004 MSGQ 171"130 RAMBOT= 1&0010 RXSSDN= 000040 SSPART= 177770
BIT3 = 000010 MSGS 171731 RAMTOP= 16777& RUSER= 100000 S$RECN= 177711
BI14 = 000020 NEXNUM 171600 RBUFst= 177562 RXSSFN= 000016 SSRETR= 000001
BU5 = 000040 NOCT 171&4:l RBUFS2= 176542 RXSSGO= 000001 SSSE;EK= 17774U
BIT6 = 000100 NO.u!.Jij:a 100000 RB.ilRK= 004000 RX$$lE= 000100 SSUNIT= 177770

0 BIT7 = 000200 NXTSEG= 001002 RB.ERR= 100000 RXSSIN= 040000 /:iSWPRT= 17770!>
I BIT8 = 000400 OCTSTR 171b5b RB.FRM= 020000 RX$$TR= 000200 TENTAS= 000400

-....l BIT9 = 001000 OCTS'fO 171652 i<B.OVR= 040000 RXSSUN= 000020 TISBFR= 17&542 0
BOOTS 172164 G DOT 170&02 G RCMO 171144 RXUXA= 030000 TISCSR: 17&540
BRKNUO 170010 G OOTFLG= 1&7750 G RCII01 1712j2 RX$$XX= 003000 TOSB.'R= 17&546
B.CNTL= 167770 G ODTLOC= 1&7741> G RCS!!S1= 177560 RXSS02= 004000 TOSCSR= 176544
CHIN 173670 OD~SlK= 167744 G RCSR$2= 176540 R$ABRT= 000006 TI<AP4 = 161776 G
CHK240 172426 OOT",HY= 16777,* G RC.ACT= 004000 RSCOMP= 000004 TREAD 173420
CHRET 173704 ONENUM 17157& RC.OUN= 000200 RSOIAG= 000007 TUBAUD= oOllon
Ctl21N 17361>6 O.CHTL= 167772 G RC.J.EH= 000100 RSENO = 000100 TOBOOT 172464
Ctl20UT 173642 PATERN 171750 REAOU 172772 RSGETC= 000012 T.BIT = 001l0:;:0
CH8DUT 11363& PeRO = 000010 REAOZU 172770 RSGETS= 000010 USERSP= 1&1'1&0 G
CR = 000015 PBRl = 000020 REGOUT 171240 RSINIT= 000001 'vI:.CSI:.T 1704'10 G
DEVBlT= 000200 PBR2 = 000040 RESTA!! 172004 G RSNOP = 000000 XBUF$l= U7500
DEVNUII= 000001 PCMD 171044 RETRr = 0011010 RSPOSI= 000005 XBUF$2= 170546
OIAGNO 171754 PERMFS= 002000 RFLAG = 000200 RSREAU= 000002 XCSR$!= 1'1751>4
DIRBUF= 001000 PP.A = 17&200 RPOINT= 167756 G RSSETC= 000013 J(CSRS2= 176544
DONE 171574 PP.B = 1"I62U2 RTSEMT= 000052 RSSETS= 000011 XC.&RK= 000001
DRt;AD 173030 PP.BIC= 000000 RTSFCh= 000056 RSwRIT= 000003 XC.IEN= 000100
O.FLEN= 000UI0 PP.IHS= 000001 RTSFCT= 000057 R$$CON= 000020 XC.MNT= 000004
EMPTYS= 001000 t'P.BI0= 000000 RTSHGH= (,00050 RS$CTL= 000002 XC.PBE: 000002
EI'lDSGS= 004000 PP.iI!l: OOOOOl RT$lSP= 000042 R$SDAT= 000001 XC.RDY= 000200
ENTSIZ= 000016 i'P.BI2: 000004 RTSJS.,= 000044 RS$lNT= 000004 XTI<BkT= 001006
ERRBlT 171742 PP.8H= 000006 RTSRMN= 000054 RSSXOF= 000023 S$TACK= 167644 G
E.EXT = (100100 PP.B14= 000010 RTSSTA: 000040 R.HALT= 100000 SS$BRK 170000 G
E.INT = 000010 PP.tH5= 000012 RTSUEt<= OQ0053 R.NXM = 000200 SSSLTC 17000& G

. ASS • 174000 000
000000 001

ERRORS DETE;Cn;D: 0

V
I

-..l

KXTll-A2 lK FlkMwAR~
SYMBOL l'AtlLE

MACRO V04.00 5-0CT-~1 22:56:27 PAGE 63-2

VIRTUAL MEMORY US~D: 9210 WOkDS (36 PAGlS)
DYNAMIC MEMORY AVA1LABL~ FUR 40 ~AGlS
,FALCUN/C=FALCON

KXTll-A2 11\ FIRMwARE II,ACRlJ V04.00 5-0CT-81 22:56:27 PAGE S-l
CROSS REFERENCE TABLE (CREF V04.00)

SSSBRK 14-16' 27-35
S$SLTC 14'-20' 27-37
SSTACK 13-30, 24-13 27-17 49-77 49-91
AROUN2 44-47 46-2.
ARDUN3 54-24 56-2.
AUTOBA 27-13 28-431
8.CNTL 13-141 20-49* 49-54* 49-55 56-3
BAObOT 49-66 49-90.
BAUDRS 9-14' 28-44
BO.003 7-211
BO.006 7-22,
BO.012 7-231
80.024 7-2411 9-14
BO.048 7-2511
80.096 7-2611
BO.192 7-271
BO.384 7-2fH 9-1tj
81'lU 5-5' 7-43 1i-29 8-47 10-5 10~13 35-50
8ITl 5-6, 7-36 8-27 &-38 8-40 iI-42 lj-44
BIT10 5-15.
8IT11 5-16, 6-10 6-37
8ITl2 5-1H
BIT13 5-1!1, 6-35
SITU 5-19' 6-32
BIT15 5-20' b-30 10-3 10-9

V BIT2 5-7# 7-30 8-25 8-38 8-39 8-42 11-43
I SIT3 5-8. 7-15 8-2" 8-3£1 8-39 8-40 B-41

-..) BIf4 5-9. 7-10 8-21 9-34 IV
BITS 5-1u. 7-17 8-18 38-11
BIT6 5-11' 0-23 7-1$ 8-17 38-9
8IT7 5-121 0-19 7-3 11-15 9-32 10-4 10-11
BITS 5-13'
8IT9 5-14'
BOOTS 33-21 49-25.
BRKNOO 14-1i1 14-l6' :11-17
CH21N 61-34 b1-4b 62-jU
CH20UT 60-27 1>2-16,
CH80UT 52-17 62-131
CHIN 62-35,
CtlK240 51-1 H 52-3b
CHRET 62-24 62-3911
CR 5-25f 37-26 38-21 40-~4 41-20 43-13
D.f'LEN 48-1~5' 53-47
DEVBIT 10-11. 49-37
DEVNUM 10-1311 49-83
OIAGNO 33-25 44-3711
OIRBUF 4&-62. 48-11 II 48-119 48-12U 48-121 4S-122 53-21
DONE 40-17 40-3H
DREAD 50-21 56-4 57-211
E.EXT 10-17# 44-17
E.INT 10-18. 44-18
E.PAR 10-19. 46-6
EMPTYS 48-1271
ENDSG$ 48-129, 53-31
t:NTSIZ 48-1241
ERRSIl' 44-19. 46-11

KXTll-A2 1K FIRM"ARE MACRO V04.00 5-0CT-81 22:56:27 PAGE S-;!
CROSS REFERENCE TA8LE (CREF V04.00)

FAKOUT 27-12 27-15f
FILNAM 48-60. 53-38
GETCHR 33-111 36-30 37-25 39-15. 39-17 41-19 49-34 49-44
GETNIJII 33-36 ,!7-33 41-:.12,
HGHSEG 48-120,
HK80$ 35-5H 37-27 38-15
HKeOQ 35-51>11 37-21 37-31 37-37 37-39 38-18 38-2()
HV8AUD 29-10 29-311
IN. USR 13-1b. 14-17 14-31* 19-36* 20-31 21-11* 22-13* 27-11'>* 35-52* 49-31*
INBYT$ 29-11 29-2711
INBYTI:: 29-t! 29-20. 29-32
INITS 44-271 46-14
KBD$ 32-44 32-~1f 35-57 46-4~
KIlDQ 32-48, 33-32 33-34 33-37 33-45 35-37 35-56 36-16 36-20 3b-n 36-32
LCSI::T 33-43 37-171
LEDOH 9-10, 26-:"17 44-39
LF 5-2U 37-36 38-13 38-17 40-29 43-13
LOAD 53-44 54-H
LOCDSP 36-39 37-18. 38-28
'"'ODE ·9-5. 24-20 44-38
MSG$ 32-52 43-131
MSGY 32-49 43-12.
NEXNUM 41-18, 41-30
NO. LOw 10-9, 21>-49
NOCT 41-25 41-35,

0 NXTSEG 48-119, 53-34
I O.CNTL 13-10. 37-48 38-5 -.j

W OCTSTO 32-40 42-141 46-44
OCTSTR 37-22 38-25 42-1511
ODT 14-32 22-19 27-18 32-11'
OOTFLG 13-26, 32-57* 36-14* 37-38 38-19
ODTLOC lJ-2H 36-311* 37-17* 37-45 38-12* 38-23* 38-24
ODTSTK 13-29' 13-30 32-22
OOTWHY 13-H 32-1&* 35-35*
ONENUM 3b-15 41-10,
PAlERN 44-33# 41>-19
PBRO 7-15, 7-22 7-24 7-2b 7-28
PBRl 7-16' 7-23 7-24 7-27 7-28
PBR2 7-171 7-25 7-26 7-27 7-~8
POlO 33-28 35-221
PERMFS 48-1288 53-29
PP.A 8-6, 46-4
PP.B 8-H 4b-3*
PP.8IO 8-45.
PP.811 8-44.
PP.8I2 8-4),
pp.Bn 8-42.
PP.8I4 8-411
PP.815 8-4u,
PP.BI6 8-39.
PP.BI7 8-38, 9-10
PP.8IC 8-48'
PP.81S 8-471 9-10
PP.c 8-8#
PP.CHI 8-231
PP.CLO 8-29f 9-5

KXTll-A2 1 K FlRMwAHE MACRO V04.00 5-0CT-81 22:56:27 PAGE S-3
CROSS REFERENCE TABLE (CREF V04.00)

PP.CWI< 8-5' 24-20* 26-27* 44-38* 44-39*
PP.DRA &-211 9-5
PP.DRB 8-2H
PP.MD2 8-17.
PP.MDA 8-18,
PP.MOB 8-25.
PP.MOO 8-1!># 9-5
PRI6 9-271 27-11 32-55 49-67
PRI7 9-2H' 27-36 27-3~ 35-48 55-5
PRINT 32-50 32-541
PUTCHR 37-24 38-22 38-27 39-19' 39-~1 40-1& 40-25 40-30 42-22
PUTCLF 40-231 42-14
PUTLF 40-29.
PUTSTR 32-56 40-15. 40-19
PWR$UP 24-12. 45-5 55-10
QODT 32-37 .32-411
HS$CUN 48-81# 52-:0:7
RSSCTL 48-79' 60-26
R$$DAT 41j-78if 61-7
RS$lNT 48-80' 52-22 52-22
RSSXOF 48-82'
R$ABRT 48-92#
RSCOMP 48-90'
RSDIAG 48-931
RSEND 48-981 &1-25

0 RSGETC 48-9&'
I RSGETS 48-941

-.l R$lNlT 4&-8H ~
RSNOP 48-8&'
.R$;'USI 4i1-9U
RSREAD 48-811' &0-26
RSSETC 48-971
R$SETS 48-95.
RSWRIT 48-1:19,
R.STRT 19-1U 45-7
R.HALT 10-31 14-29 21-46
R.NXM 10-4t 19-34 22-18 35-::15
R.PC 13-15# 21-35" 21-39* 21-41
R.STAK 10-5' 20-11 35-35
R.TYPE 13-18' 14-29" 19-32 19-34" 20-11* 20-17* 21-46* 22-18* 32-1& 3:l-36 32-42 32-54*
RAMIlOT 9-2H 25-19
RUTOP 9-231 25-24
RB.BRI< 6-371
RB.ERR 6-30.
RB.FRM 6-35'
RB.OVR 6-321
RBUFS1 6-&. 24-35 29-3 29-7 32-12 39-18
RBUFS2 6-10' 48-&9
RC.ACt' 11-16'
RC.DUN &-19' 24-36
RC.UN &-231 24-36
RCMD 33-30 36-1H
RCMDl 3&-23 36-3&#
RCSR$l 6-5' 24-3& 29-5 39-16
RCSRS2 6-9' 46-12 48-6&
READU 53-22 54-231

KXTll-A2 1K FIRMwARE MACRO V04.00 5-0CT-81 22:5&:27 PAGE S-4
CROSS REF~RENCE TABLE (CHt:F V04.011)

READZU 52-35 54-6 54-211
REGOUT 36-25 36-34 36-38,
RESTAR 21-27 45-6.
RETRY 48-54#
RFLAG 9-32. 36-14
RPOINT 13-:.12. 32-32* 36-37
RTSEfoIT 48-138,
RTSFCH 48-1411
RTSFCT 48-142.
RT$HGH 48-137'
RTSISP 48-13U 54-17
RTSJSW 48-135'
RTSRMN 48-140,
RTSSTA 48-lJH 54-9
RTSUER 48-1391
RT$USR 48-136.
RX$$02 48-21f 58-5
RXUDE 48-2H 57-44
RX$SDN 48-26' 59-15
RXSSER 48-18.
RX$SFN 48-28.
RX$$GO 48-29. 48-33 48-34 48-35 48-36 48-37 48-38 48-39 41j-40
RXS$IE 48-25.
RX$$IN 48-19.
RX$$TR 48-2U 59-15

tl RXSSUN 48-271 57-31
I RX$$XA 48-20'

......:J RX$$XX 48-22' Vi
RXSEMP 48-34' 58-4
RXSFIL 48-331
RXSRf;C 48-40.
RURED 48-36' 57-78
RXSRsr 48-38, 57-33
RXSSTD 411-3H
RXSWDD 48-39'
RXSWRT 48-35'
RX800T 49-87 50-141
RXCS 48-131 48-14 50-15 50-16 58-!) 59-12*
RXDB 48-1U 57-27
RXESCR 48-50'
RXESDD 48-46'
RXESDE 48-48,
RXESON 48-471 57-37
RXESDR 48-45'
RXESID 48-49'
RXESUN 48-4U
RXGO 57-32 57-71 58-3 59-10'
SSCART 48-106'
SSDCHK 48-108'
SSMOTR 48-110'
S$NORM 48-102.
S$OPCD 48-111#
S$PART 48-10U
SSRECN 48-112#
SSRETR 411-1038
S$SEEK 48-109"

KXTl1-A2 1K FIRMWARE MACRO V04.00 5-0CT-81 2:.1:56:27 PAGE s-~

CROSS REFERENCE TABLE (CREF V04.00)

S$UNIT 48-105'
s$WPRT 48-1071
SAVPC 13-25. 14-21* 21-31* 27-12* 32-39 35-11 * 35-54 36-24
sAVPs 13-24' 14-28* 21-36* 27-11* 3!>-16* 35-53 36-H 37-45
sEGALO 48-118'
SPACE 5-26' 37-23
SRET 41-21 41-32'
sTl73 55-41
sTArWB 51-21 53-1!>'
START 4~-U
STARTS 54-11 54-141
STRBLK 48-122. 53-25
sTTUBD 49-30.
SWCMD 36-18 36-29.

·T.BIT 9-341 37-50
TENTA$ 48-126'
Tl$SFR 48-69' 62-38
TI$CsR 48-68. 52-13 52-25 62-36
TO$BFR 48-71. 62-23*
TO$CSR 48-70, 49-26* 52-14 62-21
TRAP4 13-51 22-11 49-78' 54-18*
TREAD 56-5 60-241
TUBAUD 9-18, 49-26
TUBOOT 49-81$ 52-12.
USERSP 13-20. 32-20* 32-25

0 VECSt:T 26-46 27-341 51-22
I XBUF$l 6-8. 39-:t2*

-.....'I XBUF$2 6-12. 48-71 0\ XC.BRK 7-431 52-20
XC. lEN 7-81
XC.MN'l 7-30. 44-26
XC.PBE 7-36' 9-14 9-18 44-25 44-2b
XC.ROY 7-H 24-39
XCSR$1 6-71 24-32* 24-39 28-44* 29-37* 39-20
XCsR$2 6-1U 48-.70
XTIlBllT 48-12.11 53-50

KXT11-A2 1K FIKMWARE MACRO V04.DO 5-0Cr-Sl 22:5b:27 PAGE M-1
CROSS REFEk~NCE TAbL~ (CREF V04.DO)

ABORT

DELAY

11-15.
bl-27
12-23f

49-42
61-37
49-70

49-51 49-92 51-23 52-29 52-37 53-24 53-36 54-12 57-36 57-114

APPENDIXE
SBC-11/21 SCHEMATICS

Appendix E provides the user with the electrical schematics for the SBC-ll/21 module.

E-1

KICT'J REVNT H

KlCT7 PAROST H

ICIIT'I IRQ'I H

ROll H

lCDLI H

ICIIT7 I'BRQST H

MOl2 H

RDl2 H
SFTBNO l

KIITt C~S H

TOAl 12 H
KI<Tt SELl H

-KICTt SELl H

8 D FF
7'15'37'1

E27
2

--1 D8
RI

--..!t. 01
RI .'5

-Z. 112 Re i6

9
-'. D.

R'3

fa-KI<Tt
...ll R'I CXDll H

D't

flLKIITt
-L'! R'5 CI'BRQST H

0'5

rlLKMTI
-'L R6 CICOl2 H

D6

fl.!-KICTt
..J.! R7 CRDl2 H

07

:Ii E" OUT
ClK

KICTt

121 lS2 1 KKTt IAKDIN H .,
18

'512 lC 'I
RDn

&'386
E'3'3

'9n
2n
In
8n

1'1 KXTI CIKRO H 8
L......l,!

I 7
KXTI CRDl2 H 2 6
KKTt CMOl2 H '5 -+. 'I ADR KXTI CI'BRQST H

'I 3 7 2 r. KXTt CKDll H 1
~ €I

13 EN

lB.
1'1 H

8
J)7'tlS8 -KXTt PI H

+'3VA 9 E31 ,-

'I D FF
7'tlSI7l1

E'32

RII

KXT2 DnRQ H--!t. De

RI

KXT3 HlTRQ H~ 01

RZ

KKT'3 BKRQ H.-l..£ OZ

R3

KlCT'I PFAll H-1.1 D.

KXTt B2ClR ClR

R2
IK ..

IND

,
I~ 18 917'1lS1

I 18 E'3'1
12

CPU
DCTt I
XE'57

I
DAll'!I~
DAll'l~

2
'3

0~lI3~
OAlI2~ 'I '5 DAlll~ 6 DAlll~ 7 DAl9 ~ 9
D~l8 ~ III
O~l7 ~ 11 DRl& ~ 12 ORlll ~ 1'3 DAl'l ~ 1'1 OAll ~ 1'5 0~l2 ~

16 DRll ~ 17 DAlI ~
~ BClR 39

AI7~
~8 AI6~ - AI'5~ ~~

AI'I~
'3S
'3'5 All ~
~'t A12~

All ~ ~'3
AII!~ f1;9 2

~
KKTt CDnRQ H RRS~ 31 CAS ~ 31 PI

~ 7 R/UlB

pL-
KXTI CTnER H R/UHB 2'5 SEl0 2'1 SEll 22

III -TCllC H- MTll 21 KIITI C8KRQ H

p" COUT

-KKT3 PUP H--,1;!. PUP

1'5 GND~ KTlII

~
~ READT

RI
2211]; l~ 9

....lS D I pI KKTI TlAKO H KICTt CAS H~ ClK

KilT I COUT

KICTI BelR l
lSI 7'1

-KICTI RAS L ' E'9 6
8

7'1
l57'1

II E8 p~

'~~f
-KIeTI CAS H

-KIeT2 TSTNC H
lClCTt \lRlTE H

KICT2 TSTNC H
KICTt PI H

KleTt CAS H

TCOUT~~ KIITt

-KKTZ RQSlP H 12 EI't

'3
'I 7'1lS2 ,.,6 KKTt TREAD H
'5 EI'5

I
7'1S3Z KleTt TOIN H EI'I KKTt IAKDIN H

KMTI TDOUT H

7'1S32 KKTI TRITn H IeIeTt TDOUT H~
KXTt TDIN H 10 EI'I

n, nZ6M29M30M22

KICTt SELl H '3 ?'IlSI 6 KICTt RAS H KXTt IAK 't E'3't -KlCTt SEL8 H
l

7'1LS'367A E'II
HEX DRIVERS

'1 • ..--
6 ,~7'1LS8 KXTt BClR H

+3VA '5 E'31

2 liD-A IIR-A 3 TOAl 1'5 H 'I 10-1'1 IR-A '5 TOAl 13 H 6 2D-A 2R-A 7 TOAl 88 H III 3D-A 3R-R 9 SNO-t--L-,---~;

~ I 7~l51 12
2 E3'1

2
7'1lSI!

ENO-R
12 8D-B IR-B II TDAl 11 H 1'1 ID-8 IR-B 1'9 TDAl 1'1 H

-KKTI TBS7 l
KICTI SEll H

'3 E26 '" KICT I B2CLR l ----'--'-"'q ENO-B

BBIT
'3-STRTE

lRTCH
TDAl 1'5 H
fDAl 1" H

7 .. 5373
E'IB

TOAl 13 H RII KIITI AOI ... H
fD~l 12 H TOAl I ..
TDAl II H
TDAl Ie H
fDAl 89 H
fD~l 88 H

'5 I(KTI ADI2 H RI
TOAl 12

R2 I; I<KTI ADIII H

fOAL 117 H TDAl Ie
TDAl 06 H
fOAL 811 H
TDAl 11'1 H
fOAL 11'3 H
fDAl 82 H
TDAl 111 H

'3-5TATE .,
KKTI AD88 H LINE R'3

DRIVER TORl
12

?'tlS2'111 R'I KKTI AD09 H
E'IS TDAl 119

III I< liT I RDII H
fDAl II H KICTI B2CLR l TDAl II

KMTI BClR H KIeTI AOIl H

KIITI BClR l TDAL
19

R7 KleTt ADI" H
TOAl

-KleTt RAS l
-KIITI RAS H

-KICTt CAS l
KKT! RAS l -KXTI CAS H
KIITt CAS l
KICTt PI H KICTI SEll 6"0 L

KIeTI SEll H

KMTI SEll H KIeTI SIL' l
KMTI SEll H KXTI SEle H KICTt RDBS H

KXTt TCOUT H -KICTI COUT L TDAl III H

-f(MTI COUT H KMTI AOII't H
TOAL I" H

KleTt COUT L ICICTt ADII2 H
KIeTl TCOUT H

II 70 TOAl 12 H

I KIITI lBS7 H
SFTGND l

"
RAMS KKT3 RBS7 H

REl
KIeTI ADIII H

2 • ...--- TDAl 81 H

)k~lS8 3 KKTI \lITrE H
I £11

KICTI RDn H
TDAl

KKTI ADII'5 H
TOAL

··'5~""_KIITI \lRlTE l
'I E2'1

KXTt 1'10117 H
TORl

IClCT'3 RSTNC H

-KICTt CAS H- 'I
'37'1511 6 KleTt '5 EI2 -KIeT2 NO 8TTE H

f(XTI RSYNC l

liT H

SHEET 1 OF 7

B-3

-KKT2 CSLIP H

K)(T2 TSl'HC H

rl KICT2 TMRP L

~'
19.56'8MHZ

Kl<T2 DRRPLl' H

I U .---KXT2 DRRPL'r H

KICT2 SCLK H K)(r 1 B2CLR L I(XT2 TSYHC H
-K)(TI CAS H

KXTZ DRRPLY H

HOTEl OSCILLATOR PACKAGE IS METAL

I(XT2 ORRPL'r H

-K)(TI IAI< H

K)(Tt B2CLR L

+1YB

-KXT2 DRRPLr L

11

TDAL 88 H
TDAL 89 H
TDAL 18 H
TDAL 11 H

GND

KKTt IAK L

OJ
8

9

~
-+.1:
~
~
-ll

~

+'5YHCR

:-.}~ ..
12 X B 6

PROM
82512'3

E't8

8M I

1M 2

2M '3 .. 1M
.. M '5
5M 6

611
7
9

711

B
I
2 ADR
'3
'I

EN

M18 M'58

(~

I

i!1 :-'}~R ~~IIR i!1 't711. 't7BR
7 '5 8 '3

-I(XT2 EYNTAK
-KXT2 BKAK H
-KXT2 PMK H
-KMT2 PBAK H
ROLl H
MOll H
RDL2 H
MOL2 H

KICT'3 DCLo H

GND

KKTI RAS H-""T"1 --0-'_

I. __ ..-8_ -KXT2 RQSLP H

KXTt B2CLR L

II TCLKSP H

K)(T2 SCLK H I I
KXT'3 TMER

K)(T) RRPL'r

-TCLKSP H

KXTt B2CLR L

K)(T't ROMR H

K)(TI COUT H

+1YB

-KXT2 0116 H

-KXT2 DRRPL'r H 1 I

'3
8

9
KXTI BCLR

-KXT2 TCLKSP L

711LS8 18 K)(T2 TI1RP L H~ H B E26

KXT2 DMRQ H

K)(Pt RSACK H

-!-'3YB

12
2 0

KXTI COUT H I I

18
9
8

9
8

KXTI SEUI

KXTI SELl

K)(T2 DMRQ H

H

H

112'5 M21 f.i+'5YCR

1 i!2 1 i!2
2Ka 2KII

6 '5
~~~r-+------r--KMT2 CSKTB H 
~~~r-+------r--KMT2 CSOLI H 
I-'-:=+-t-~--+- -K)(T2 CSQB H
I-!-:~~r-+------r- -KXT2 CSL I P H
~~~r-+------r--KMT2 CSPL H 
~~~r-+------r--KXT2 CSOLB H 
~~-t--+-----~--KXT2 CSKTA H
f-!.!4--t--''----- -KXT2 CSRAM H

KXTI loIT H

"'3YB

KXTl IIBrTE H

K)(TI CAS H

+'3YB

r---~L-KXT2 TS'rNC H
-KXTt SELl H

-KXT2 TSTHC H

-K)(TI RAS H

-KXTI PI H

Kxn RSACK
K)(TI BCLR L

K)(T I BCLR L -L---+L-_-_-_-_-_-_-_-_-_-_-_-_-_--' ________________________ ---'

KKT2 TlJTBT H

KXT2 NO BrTE L

-K)(T2 TOMGO L

SHEET 2 OF 7

E-5

8881 .. BO"60 L <:ag) K)(T20"RQH~
KI<T2 TDnGO H S El

KI<Tl TDOUT H~8881 ~
9 BDOUT L~ EI

-1<KT2 OMe H
'3 BDIN L<aiiV

1<KTI TDIN H

B1H8T L~
KlCT2 TUTBT H

,-----BBS 7 L@)

1<I<TI TBS7 H 1<)(13 RBS7 H

.-----B IIH T 'L <aID
1<I<TI BCLR H ---'-.....

.-----BSTHC L ~

K)(T2 TSYHC H Kl<n RSYHC H

...-----BIRKO L <aHV
1<)(Tl TlAKO H --................ , ~"...._

M5

Kxn RRPLY

.-----t-BRPL Y L <BID
KKT3 RRPLT H

~---- BHAL T L <aEi)
+'311 A

M6
THRLT H --+----+--9 ,

+'3VA
2 ,--.... ,-- KKT'3 REVNT H

.------BEVNT L ~

TEVNT H ---t-----t-'-'f, '3
J" .,

Dl
DSS'I

+~VHCR-~~-Kr---~r---------~

R't
l1i181<A

+!5VHCR

R'5
'171< ..

C8
39UF
lev

C9
828Pf'
58V

7 6 -=-
KI<TI TReTn H-1~~8U-~~~I~~~~~2 ____ t-__ ,

7'1 ...
LSI23

E9

S

MI'l M'3 "12

r r
GND +'3VA

"lilA

,-----...-':'-''- KI<T3 TnER H
KI<T3 RRPL Y L -..L.--------t---+4

11

-KlCTI RA5 L

9
8

KI<TI CTnER H
KI<TI TREAD H

KXTI PI H

~---- -BDCOK L @D KXTI BCLR L

KlC13 DCLO H KI<T2 EVNTAK L
NOTE' IF BPOK H [5 ALUATS
ASSERTED THEN FF [S ALUATS PRESET.

-1<lCT'I PFRIL L

KX13 PUP L

~~IWB~------~~----~KXT'3 DCLO L

MIB Ml'3 M'59

t+'5VNCR

+lVA

'--""L-"--_ 1<KT'3 HLTRCI H

KI<T2 BKAK L

KXTI BCLR L

MS

+'lVA

,-----..-"-- KI<T'3 BKRCI H
+lVA

SHEET 3 OF 7

B-7

KXTI RSTMC L

~ BIoITBT L

@D 8£>[1'1 L

<aID BDOUT L

RUZ BDRL !!Ie L
RVZ BORL el L
BEZ BOAL 82 L

GNP

-I(XT2 CSQ9 H 1'3

REG SEL
DCB0~

£19

SEL

OUT

VEC

EN

+~VNCR

R'3
'3.~8KD

CII
128pF
1!!18V

L<aW
RERD L
IoIHB L
IoILB L

RES[STOR
NETIJORK

1'318110-00
i!6

2 "'~.0V
'3

l"
~

H
'5

H I>
7 H 8 &80R H 9 H 10 -::-H

If
H 12
H

RESISTOR
NETWORK

1318110-00
i!'3

H 2 +~.0V
3 In. H

H ~

5 H G H 7 H
B &800 H q

H 10 -::-H
H

11
12

H

KXT2 CSQB l

~ -BPi'lL 1'+ H
+'3VB

BPI BSPARE I>
BP2 -BPi'lL 10
BLZ -BDAL 87
BR2 -BPi'lL II
BT2 -BDAL 13
BS2 -BDAL 12
BJ2 -BDAL 0'5
BM2 -BOAL 08
BN2 -BDAL 09

6

KXT2 DMe H
KXn RSYNC H

11
H
H
H
H
H
H
H
H

H
H
H
ti
H
H
H
H
H
H
H

2
'3
~

'5
&
7
8
9

10
11
12

2
3
4
~
I>
7
B
9

10
II
12

RESISTOR
NETIoIORK

1118110-00
i!'5

+'5.0'1

1'" 68001

::-

RESISTOR
NEHIORK

1319110-00
24

+'5.0V

1'" &811"

-KXTl IAK H
-KXTI BCLR H

KXTI TlRKO H

KXT't RHlB H
KXT't XHB H

+~VNCR

KXH RLB H

07 H
0& H
0'5 H

H
L

+~VNCR

KXT't READ L

~ BIT +~VCR

TRANS
CE[VER I' ~Z DC00~ 2Kn

E't'3

6 't
D'3<X> 7 TDRL e'3 H

[N/ 02 <X> TDAL 02 H 17 OUT DI <X> TDAL 01 H 18 De <X> TDAL 0e H

H '3 MATCH I<XH IRC~ 8
9 BU,

BU2 II
12 BUI

BU0 1'3 MENB

19
2 JA3

JAZ
JA1

1& °JV'3 1'5 JV2 1'+ JVI

~ XtllT 't REC

'+ BIT +'5VCR
TRANS

CEIVER
DC00'5

E't7

D3<X> &

IN/D2<X> 7
OUT DI <l> 17

D0<l> 18

MATCH H 3
au'3
SU2
SUI
SU0
MENS

JA'3
JA2
JRl

16 JV'3 1 ~
I~

.JV2
JVI

XMIT
REC

Kxn RLB H

KXT3 RSYNC H
-KXT2 CSQB H

"
~2

2Kn

10
TOAL 07 H
TDAL 06 H
TDAl 0'5 H
TDAL 0~ H

KXH RDMR

KXT'I CSCB H
KXTI TREAD H

KXT2 DRRPLY H

'3 7'tl514 -'-_L_ KXT't READ H
E21

+~VCR 't B[T
I, TRANS

CEIVER i!2
OC011~ 21(0
E~Z

'3

P'3<X> I> TPAL II H
IN/D2<X> 7 TDAL 10 H
OUTpl <X> 17

18 TDAL 09 H
D0<X> TDAL 08 H

H H '3 MRTCH KXT't RSRCK H
II H B

9 BU'3
10 H BUZ
09 11 BUI H 12 H BU0 1'3 l MENB

+'5VNCR 19 JR'3 2 JR2
JRI

I G JV3 15
l't JVZ

JVI

KXH XHB H
'5 XMIT

KXT't RHLB H
't REC

~ BLT +'5VCR
TRANS I,

CEIVER 22
DC005

E51
2Kn

G
7

D'3<l> - TDRL 1'5 H
[N/ D2 <x> 7 TDRL l't H
OUTDI<x> 17 TDRL 1'3 H

D0<l> 18 TDAL 12 H

H 8 MATCH H '3 KXT't PFRIL H
I~ H

9
BU3

f't H II aU2
13 H BUI
12 H sua

SHEET 4 OF 7

E-9

NOTE:
"7 IS URAPPED TO MI NORMAllY.
IF BATTERY BACKUP IS DESIRED
FOR E~~ AND E~~ THEN ~RAP ~7
TO ~16 AND nl~.

"19 "7 "& I "6en'tll n18n'+7 n'll

~~5

"'l'l +'5YCR n'+2 n'3'3M6'3M'3"n&2n'l8 M'32 ~~1

< r r KKTI 1'1011 H

KKT2 CSKTA l KI<T2 CSKTB l
f (I:,:!

.~VNCR- ,...J: O"'Op'2~8;+-_+-+-+_+--_+-+- H!YHCR
~O Og..

KXTI AD8S H- ~O 28 O~
KICTI ADII7 H - ~ 0 PI N o~i;:;;;""~-1r-+_t-+_--+_t­
KICT I AD81> H - ~ oSOCKor.2",'I;---1r-+-+_+-__ +-+_
KXTI ADII., H - ~ 0 o~2~'l:---+--,
KICTI ADII~ H - -f 0 IIE"\~2~-+ __ -I
KXTI ADIl3 H - ~ 0 0~1:--_+--+_+--_+---l
KXTI A002 H - ~ 0 0!'!2-=":--1I---+-+_---l
KKTI R001 H - +!! 0 or,I-:9~-+--+_+---+-t-

TDAl es H - -!-:l: 0 0r,1-.;8;--11---+-+_--+-+-
TI>Al 89 H - ~ 0 0..,1.,,7_-1r-_-+_+-__ +-+_
TOAL I II H - +t 0 or,I-,'!&:--___1I---+-+---+-+-

GNO-t~I~It~~~_~o¥I~~~-1I---+-+_--+_t-

"'37

,-!rovo 28

~o O~
KXTI ADeS H ~o 28o~
KilT I ADe7 H ~oPIN02"
KXTI Aoe, H ~oSDCK02'1

KI<TI ADe'5 H ~OICE'I't°I~~
f(XTI ADe't H ----:: 0 0
KI<TI ADII'3 H ~o 0 21
f(XTI ADII2 H ~o 0 28

KIITI AOel H ~o 0 19

TOAl ee H ----40 .. 18
TDAl 81 H ~o 0 17

TDIK 112 H --!f.o 0 IS
SND 1'10 0 '"

MI

KIITI 1'10119 H
KKTI AOle H

TDAL 1'5 H
TOAL 1'1 H
TI>Al 13 H
TDAl 12 H
TDAL II H

".,VHCR

KI<TI 1'1009 H
KI<TI ADle H

TO I'll 87 H
TDAL 8S H
TDAL e5 H
TOAL e't H
TDAl Ell H

~~~2~8+'-+~I-I-_+-+ ___ .5YHCR 
~o og 

KICTI ADee H- r-to 28 ,,~ 
KXTI ADII7 H- ~o PINor.2::'!"'-1H-+--f--+--Ir--KICTI ADII9 H 
KICTI AOIII> H - ri 0 SDCKo 2'1 KXT I AD I II H 

KKTI ADII" H- ~oXE"~~ 
KKTI AOll'+ H- ~oo °0F.!2"'1-I--IH 
KXTI ADII'3 H - r-:: 
KXTI AOll!! H - ~ 0 0!,!2~1I"""1--+-+_-+-___1 
KXTI Roe I H - ~ 0 0r,1-:!9,....,1--t-+_-t-___1H_- TOAl I '5 H 

TOAl es H - r!-! 0 0 I 8 TOAl I It H 
TDAl 09 H - ~ 0 0 I 7 TDAl I 3 H 
TDAl Ie H - ~ 0 0 L~ TDAl 12 H 

GNO-t~I~'I~o~_~o¥I~~'-1I-_t-+_-+____1H_-TDAL II H 

,...J:O"'Or28 ".,VMCR 
~o 0 27 

KKTI ADeS H---t O 28 o~ 
KKTI ADII7 H~O P1No2'5 KXTI ADe9 H 
KKTI ADe& H~OSOC:f(021t KXTI ADle H 
KKTI ADe'S H---!O ~2'3 7 XE~ 22 
KKTI AD01t H -----;; 0 
KI<TI ADIIl H~O 0 I 
KKTI AD02 H~O 02e 

KXTI A001 H~" 0 19 TOAL e7 H 
TOAl Be H --!-:!; 0 0 I 8 TOAL 8& H 
TOAL 81 H~O 0 17 TDAl e5 H 
TDAl 02 H~O 0 1& TDAl elt H 

GND -'..j 0 0 I '5 TDAl 0l H 

ns .. n'5& 

~ < 
M3& 

"" i ~, .~." "" 
i"" ~"'i ,>~ .. j 

GHO KilT I AOl2 H 

+"YCR 
r. 

I'" 8 2KI> 

KXTI ADel H 
8 
7 KXTl ADB2 H 
& KXTI ADel H 
'5 KXTI ADII" H .. 

KXTI ADII'5 H , 
KXTI A066 H 2 
KXTI 1'1067 H I 
KXTI AOl!l8 H 2l 
KXTI 1'1009 H 

22 KXTI ADI0 H 1'3 KKTI ADII H 

KICT't READ l 
KXT,+ ~HB l 21 

20 
18 

KKT2 CSRAM l 

2K X 8 
STATIC 

RAM 
2BISP 

E'53 

ne < +e MI < 'fI M2 < -W 
Ml < -W 
M't < 15"" 
M'5 < -:-t 
M6 < -tT 
M7 < ~ 

A8 
AI 
A2 
Al 
A'+ 
A'5 
A& 
1'17 
A8 
A9 

AI0 

~REN 

END 
[C SEll 

TDAl 8S H 
TOAL 119 H 
TDAL III H 
TDAl I I H 
TDAl I~ H 
TDAl 1'3 H 
TOAL 1'1 H 
TDAL 1'5 H 

n,l 

~ 
KI<T't READ H 

KXTI ADel H 
KKTI ADB2 H 
KXTI ADB'3 H 
KKTI ADII~ H 
KKTI AD6'5 H 
KXTI A00S H 
K)<TI A007 H 
KXTI AD08 H 
KXTI ADe9 H 
KKTI ADle H 
KXTI ADII H 

KKT't IoIlB l 
KXT't RERD l 

KXT2 CSRRM l 

M~7 

<~ 2K X 8 
STATIC' 

RAn 
21!l16P 
El8 

Me < --h;-
MI < """iT M2 < It" 
M'3 < --t;;-
M .. < ~ 
M'5 < ~ 
M6 < :it n7 < 

TOAl BB H 
TDAl BI H 
TDAl 82 H 
TDAl e'3 H 
TOAl II .. H 
TOAl 6'5 H 
TDAl 1!16 H 
TOAl El7 H 

8 All 
7 

-~ 
AI -- A2 

'5 
A'3 't 

'3 A" 

2 1'1'5 

I 1'16 

2'3 
A7 

22 
1'18 

19 
0:>9 
Ale 

~I IoIREN 
2e END 

~IC SELl 

d 02 +12V 

C13' C't 
.'t7UF .8~7UF 
25V '5ev 

.5YCR-------,------~------_r------T_------I 

CI9 
.e't7U 
.,BY 

C2f> 
.e't7UF 
OSllY 

.. '5YNCR---,------_r------r_----_r------~--L-_.------,_----_;r_----._------r_----_r------r_----_r----_,-------r------r_----_r------~----_.--------------------_,------_r------r_----r_----_, 
C29 
.'I7UF 
2'5Y 

C'39 
.'t7UF 
2'5Y 

6ND--~------~----~----~-----L--~~--_r--L-----~_,--~~~-L--~~--,_--~_r--~~--~_,--~--~-L--__ ~ ______ L_ ____ ~ __________________ ~ ____ _L ____ ~ ____ ~ ____ _L __________________________ ~ __ __J 

-12V --'-----' 

GND TTL 

SHEET 5 OF 7 

E-11 



DLART 
DCll9 
KE'58 

KKT'I READ L [DALI!I] 
KKT2 CSDLII L [ DALll 

KKT'+ ilLS L. [DAL.21 
[ORL.'3] 

6NO [ORL.'+] 
KXTI ADel H [OAL..,] 
KXTI ADII2 H [DAL.61 

[ DAL71 
KXTI BCLR H [ OAL81 

KXT2 DL.CLK H [DAL9] 
[DAL.III] 

KI<T6 RDATI H [OAL.II] 
[DAL.12] 

[PSRI][ DAL.I '3] 
[DAL.I'+] 
[ DAL.I.,] 

[RT lCLK880 
'39 [RT ]CLK'511 

Kiln DCLO H TEST [ RTlCLI<611 

RCV[ IRQ] 
KM[T[ IRQ] 

[SOl 

[ BRKIRO] 
[ 8RCLK] 

MI7 M2e M21t 

'+ ., 
6 
7 

9 
II 

II 
2 

1'3 
1'+ 
15 
1& 
17 
8 
9 

2'5 
'3'5 
'36 

2& 
29 

8 

'3'3 
'3'+ 

tTHALT f H GND 

TDAL I!II!I H 
TDAL 01 H 
TOAL. 82 H 
TORL. 8'3 H 
TDRL. e'+ H 
TOAL. 11'5 H 
TOAL. 116 H 
TDAL 117 H 
TDAL 08 H 
TDAL 09 H 
TOAL 18 H 
TOAL. I I H 
TDAL. 12 H 
TDAL. I'3H 
TOAL. 1'+ H 
TDAL. 1'5 H 

RDLI H 
KDL.I H 

KKT6 KDATIP L 

GHD 

RDATI N H 

96'36 E'+2 j!l-+12Y 

E'+2 !L--12V 

KKTS XDATI P L 

REF E30 P[N I H 

JI 

6ND 
RDATIN H 

RS 
12Ko 

-12V 

+'5VNCR 
I 

i!1 
'+7e" 

KKT2 DLCLK H-+-,~~ 

DLART 
DC'319 
XE'59 

RD [ DALe] 
ENO [DALI] 
IIR[L.B] [ DAL.2] 

KIIT'+ READ L I 

KKT2 CSOU L 2 

KKT'I ~LS L '3 
[ DAL.'3] 

58 [ DAL.'1] 
51 [ DAL'5] 
52 [DAL& ] 

aHD 21 
KXTI AD01 H 

22 

KXTI AD02 H 
2'3 

[ DAL7] 
CLR [ DAL8] 
CLK [ DAL9] 

KXTI BCLR H 2'1 

KXT2 DLCLK H 
n 

[DALl8 ] 
[51 ] [OALlI] KKT£. ROAT2 H 27 

[OALI2] 
[ PBR I ] [ DALI '3 ] 28 

[ OALI'I] 
[DAL 1'5] 31 

37 
'38 [RT lCLK81!J1!J 

KilT] DCLO H '39 [RT ]CLK'50 
TEST [ RTlCLK68 

RCV[ IRQ] 
KMIT[ IRQ] 

[SO] 

[ BRKIRO] 
[BRCLK] 

KXT6 RDATI H 

I MH002' Ell I£. I +12V FI 

1'"'-'0-- + I 2F 

C'3 
.'+7I'F D'+ 
2'5V D'S't 

7 
D'5 
IN7'+9A 

D'3 'I.'3V'S:: 
CI 
.'t7UF D6''1 D2 HI 

2'5V D&',+ GND 
'5 -12V 

M28 M27 MI9 M23 

'+ 
'5 
6 
7 
8 
9 
10 
II 
12 
1'3 
1'1 
1'5 
1& 
17 
18 
19 

2'5 
3'5 
'3& 

26 ROL2 H 29 KDL2 H 

'30 

'3'3 
'3'1 

~TEVNT 
TDAL ee H 
TORL 81 H 
TDRL. 02 H 
TDRL 11'3 H 
TDAL 0'1 H 
TDRL 11'5 H 
TDAL 11& H 
TDAL 117 H 
TDAL 08 H 
TDAL 09 H 
TDAL 10 H 
TDAL. II H 
TDAL 12 H 
TDAL 1'3 H 
TDAL 1'1 H 
TDAL 1'5 H 

KilTS XDAT2P L 

GNO 

RDAT2H H 

H 

REF E'30 
J2 

GND 

+12F 

KXT6 XDAT2P L 

RDAT2N H 

-12V 

R7 
12Ko 

KXT£. ROAT2 H 

SHEET 6 OF 7 

E-13 



M't9 OCTAL 
BUS 

TRNVER 
7'tl52~5 

E'50 

B7 II KXT? PB3 H 
PSJ3 H 9 A7 

SG 12 KKT? PB~ H 
PSJ" H 8 AG 

B'5 13 KXT7 PB2 H 
PBJ2 H 

? I'! '5 

B~ 
I .. KXT? PB'5 H 

PBJ'5 H A~ 

B3 1'5 KXT? PSI H '5 
PROG PBJI H A3 

PRF/INF IS 
8255 't 

82 KXT7 PBG H 

EGa PBJG H I'! 2 

PA?<]> 37 XXT? PA7 H BI I? KKT7 PB7 H 
PAG<]> 38 KXT7 PAG H PBJ7 H 3 I'll 
PA'5<]> 39 KXT? PA'S H 
PA~<]> '+il KXT? PA't H B0 18 KXT7 PB0 H 
PA3<]> I KKT? PA3 H PBJ0 H 

2 All 
PAZ<]> 2 KXT? PAZ H 
PAl <]> 3 KXT? PAl H D[R 
PA0<]> 'I KXT7 PAB H GND 19 EN 

PB7<]> 2'5 KKT? PB7 H 
PBG<]> 2~ KXT? PBG H 
PB'5<]> 23 KXT? PB'5 H 
PB~ <]> 22 KXT? PB~ H 
PB3<]> 21 KXT? PB3 H 
PB2<]> 20 KXT7 PB2 H 
PB 1<]> 19 KXT? PBI H 
PB0<]> 18 KXT? PB0 H 

PC7<]> 10 KXT7 PC? H 
OCTAL 

1 I BUS 
PCG<]> 12 KXT7 PCG H TRNVER 
PC'3<]> 

13 
KXT7 PC'S H 7'tL52't'5 

PC't<]> 17 KXT? PC't H EG2 
PC3<]> KXT? PC3 H 
PC2¢ Ie; KXT7 PC2 H II 

1'5 87 KXT7 PA7 H 
PCI ¢ KXT7 PCI H PAJ7 H 

9 1'17 
PC0<]> I .. KXT7 PCB H 

27 Bf, 12 KXT7 PA0 H 
TDAl 07 H <]>7 B 
TDAL 0S H 28 <]>G 

PAJ0 H AS 

TOAL 0'5 H 
29 <]>'5 I) 
30 B5 KXT? PAG H 

TOAL 0't H 31 <]>'t DATA PAJG H 
7 

1'15 
TOAL 113 H 32 ¢3 
TOAl 02 H n ¢z 8't I" KXT7 PAl H 
TOAl 01 H '3'1 <]>1 PAJI H G 1'1'1 
TDAl 00 H ¢e 

B'3 15 XKT7 PA'S H 
PORT PAJ'5 H '5 1'13 

-XXI" SEL6 H I G KXT2 PI'!F1K L 
B2 KXT1 PA2 H 

PAJ2 H KXTI 82CLR L -
XXT't READ H 

81 17 KXT7 PM H 
PAJ't H 

B0 18 XXT? PA'3 H 
PAJ3 H 

1)6 
M'52 DG6't 6HD 

NOTE' CONNECT TO PCS [N MODE 2. 

KXT2 PBAK L 
C22 

100V 
I ~70p; 

Me;~ M'5;M'58M'5~ 

DUAL 'XT? PC2 H 
) tbKKT7 QUAD PCf, 

Ria KKT? PC~ BUFFER laBn 
?~lS2't~ 

EGI 
18 KXT7 PCJI H 

2 ABT 
KXT7 pel H Ae 

"'IT 
Ie; 

~ 
PCJ~ H AI 

A2T I~ 

G PCJG H 1'12 

A;T 12 KXT7 PCJa H 
8 KXT? PCB H 1'13 

-l< EN 

B0T 9 KXT7 PCJ; H 
I I KXT? PC; H BB 

BIT 7 r KXT? PCJ? H 
13 KXT? PC? H BI 

B2T '5 KKT7 PCJ'5 H 
1'5 KXT? PC'S H B2 

I? B3T fL-
KXT7 PCJ2 H 83 

~ EN 

-:: 

+11'1 OJ 

Z D I ~KKT? PAROST H 
+3VA 

7~ 
l5?~ 

; E I 7 p; 
~ 

~T.f, 
7'tlse S 

'3 E't9 

+;VI'! NOTE' 

113 

12 D I ~KXT7 PBRQST H 
+3VR 

7'+ 
lS?'t 

11 EIB pi 
C 13 f-8· 

1 ~ 7~LSB 3 
2 E3S 

M'51 

~ H 
H 6ND 

~~ 
+5VNCR 

[ 

KXT? PCJI H-

PCJ~ H-

PCJG H-

KXT? PCJ0 H-

PBJ? H-

PBJf, H-

PBJ? H-

PBJ~ H-

PAJ; H-

PAJ2 H-

PAJI H-

PAJ0 H-

-=-

READING THE 82'3'5 
\.jILL RESULT IN T 
ERRONEOUS DATA. 
THE H[GH BHE ~[ 
DATA TRANSFER [. 

J3 

XXT? PCJ2 H 

KXT? PCJ'3 H 

XXT? PCJ7 H 

KXT? PCJ; H 

PBJ0 H 

PBJI H 

PBJZ H 

PBJ3 H 

PAJ~ H 

PAJ'S H 

PAJ& H 

PAJ? H 

-= 

1'1-5 CONTROL REGISTER 
HE TRANSFER OF THE 
ANY READ OR ~RITE OF 
lL RESULT [N AN ERRONEOUS 
E. ALL ONES. 

SHEET 7 OF 7 

E-15 



APPENDIXF 
GLOSSARY 

ADOI-ADI5 - A I5-bit on-board address bus used to address memory and peripheral devices. Gener­
ated by two 8-bit latches that are loaded from the TDAL bus. See also BBS7. 

AIO-AI7 - Input lines used by the microprocessor for interrupts and DMA requests. 

ASPI - Microprocessor transaction that allows the microprocessor to recognize and accept pending in­
terrupts or DMA requests. 

Autobaud - Self-adjusting baud rates for SLUI only. Implemented by firmware in the optional Macro­
ODT ROM. 

BBS7 - LSI-ll bus signal indicating that the device addressed is in the I/O page. 

BDAL 0-15 - Multiplexed data and address lines of the LSI-II bus connected through the backplane. 

BDCOK - LSI-II bus signal that goes high 3 ms after dc power is applied and goes low 4 ms after ac 
power is removed. 

BDIN - LSI-ll bus data input strobe. 

BDMGI - LSI-II bus signal from the BDMGO bus pin. It enters each module on the BDMGI pin and 
exits on the BDMGO pin. It represents the bus grant for a DMA transaction. 

BDMGO - See BDMGI. 

BDMR - DMA request signal from the LSI-II bus. 

BDOUT - LSI-II bus data output strobe. 

BEVNT - LSI-II bus signal used to generate REVNT. Can be used to initiate an interrupt. 

BHALT - LSI-II bus halt signal used for a priority 7 interrupt that vectors through location 140. 

BINIT - LSI-II bus signal used to initialize all the devices on the bus. 

BIRQ4 - LSI-II bus, level 4 priority interrupt request that is used to initiate the internal IRQ4 signal. 

BKRQ - Internal control signal initiated by BHAL T or BREAK detect from terminal. 

BPOK - LSI-II bus signal that goes high 70 ms after BDCOK and goes low when ac power is lost. 

F-I 



BREAK - Initiated by pressing the BREAK key. Causes the transmission line to the SLU to be forced 
to the space state (logical zero). This condition is sensed by SLUI and causes the SBC-ll/2I to gener­
ate BKRQ that can be used for interrupts. 

BRPLY - Slave's acknowledge of an LSI-ll bus cycle. 

BSACK - Acknowledges receipt of a DMA grant signal. 

BSYNC - LSI-II bus cycle control signal. 

BWTBT - LSI-ll bus write byte control signal. 

CAS - An output from the microprocessor that acts as data strobe. Used for the read/write, DMA, and 
ASPI transactions. 

Condition codes - The least significant four bits of the processor status word that monitor the results of 
the last instruction executed. 

Configuration - Allows the user to select optional features of the module by inserting jumper wires. 

Control and status register (CSR) - Internal register in an I/O interface that allows the program to 
control and monitor the operation of that interface. 

Control word - The data contained in the control register of the parallel I/O chip that determines the 
configuration of the parallel I/O interface. 

COUT - An output from the microprocessor clock that is asserted once during each microcycle. 

CSKTA - The RAM/ROM socket set A chip select strobe. 

CSKTB - The RAM/ROM socket set B chip select strobe. 

CTMER - Time-out interrupt that has the same effect as HALT. 

Cycle slip - This condition exists when the READY input is pulsed while RAS is asserted. It causes the 
microprocessor to be idle, and no transactions occur. 

DATI - LSI-II bus transaction that transfers sixteen bits of data from the slave to the master. 

DATO - LSI-II bus transaction that transfers sixteen bits of data from the master to the slave. 

DATO(B) ~ LSI-ll bus transaction that transfers eight bits of data from the master to the slave. 

DMA - Direct memory access for transferring blocks of data without program intervention. 

DMA transaction - A microprocessor transaction during which the microprocessor gives up bus master­
ship to another device for direct transfer of memory data. 

EIA RS-232C - Electronics Industries Association serial line interface standard. 

EIA RS-423 - Electronics Industries Association serial line interface standard. 

F-2 



Fetch/read - Microprocessor transaction that transfers data from memory or I/O into the micro­
processor. The data may be an instruction (fetch) or an operand (read). 

Firmware - The programs that reside in the PROM or ROM hardware. 

FPLA - Field programmable logic array. Used to decode memory addresses. 

HALT - The highest priority interrupt. Causes the microprocessor to go to the restart address and loads 
the PSW with 340. 

Handshaking protocol - The series of events used to establish data transfers. 

IAK - Microprocessor transaction to acknowledge an interrupt and secure a vector from an on-board 
location or from the LSI-II bus. 

Interrupts - Interruption of the normal program execution to service an external request. 

Interrupt protocol - Signal sequence required to initiate and service interrupts. 

Interrupt vector - The location in which the address of the interrupt service routine is stored. 

IRQ4 - See BIRQ4 

KXTll-A2 - See Macro-ODT. 

LSI-ll bus - An asynchronous bus that provides interconnections for LSI-II type modules. 

Macro-ODT - The KXTII-A2 optional firmware for the SBC-II/21. 

Maskable - A priority level that can be inhibited by loading the PSW with a higher priority code. 

Memory mapping - Creating regions of memory via jumper configurations to determine the on-board 
portions and the LSI-ll bus portions of memory. 

Microcycle - The time necessary to execute one microinstruction. A transaction may use three or four 
microcycles. 

Mode register - An internal microprocessor register used to define the start and restart addresses. 

Nibble - The upper or lower half of a byte that consists of four bits. 

Nonmaskable - A priority level that is higher than the level selectable by the PSW. 

NOP - A transaction that produces no useful output. It is used to introduce a delay or wait period. 

Parallel I/O - Parallel data interface. 

Parallel I/O handshaking - Control signals used to establish parallel data transfers. 

PARQST - Parallel I/O port A interrupt request. 

PBRQST - Parallel I/O port B interrupt request. 

F-3 



PI (priority in) - A microprocessor output signal used to strobe interrupt and DMA requests into the 
microprocessor. 

Power fail (PFAIL) - A nonmaskable interrupt caused by a power failure that causes the micro­
processor to vector through location 24 to the power fail routine. 

Priority - Bits 5-7 of the PSW. Used to define the priority level of the microprocessor. 

PSW register - A microprocessor register that contains the processor status word (PSW). 

PUP - An input to the microprocessor that controls the power-up sequence. When it is switched from 
high to low, the microprocessor power-up sequence is initiated. 

RAM - Random access memory defined as read/write memory. 

RAS - Microprocessor output used as an address strobe in read/write, IAK, and DMA transactions. 

RCSR - Serial line receiver control status register. 

RDBR - Serial line receiver data buffer register. 

RDLI - Serial line receiver number 1 interrupt signal. 

RDL2 - Serial line receiver number 2 interrupt signal. 

READY - Input to the microprocessor that causes cycle slips when pulsed. 

Restart address - Jumper-selectable address that the microprocessor jumps to when executing a HALT 
interrupt. 

REVNT - See BEVNT. 

ROM - Read only memory that cannot be written into. 

R/ - WHB - A microprocessor output that is low for high byte write transactions and high for read 
transactions. 

R/ - WLB - A microprocessor output that is low for low byte write transactions and high for read 
transactions. 

RTI - Return from interrupt instruction. 

SELO/SELI - Microprocessor outputs used to define the transaction being performed. 

Serial I/O - Asynchronous serial line units for the transfer of serial data. SLU1 and SLU2 are two such 
units used in the SBC-11/21. 

Slew rate resistor - A resistor installed on the module that is compatible with the baud rate selected. 

Split speed - A process that sends data at one baud rate and receives data at a different baud rate. 
SBC-ll/21 does not support split speed operation. 

Spurious halts - Halt conditions that are not programmed or introduced from an error condition. 

F-4 



Stack pointer - The register that contains the address of the last word stored on the stack. 

Start address - A jumper-selectable address that the microprocessor goes to during power-up. 

TCSR - Serial line transmitter control status register. 

TDAL 0-15 - Internal on-board bus used for multiplexed data and address lines. See BDAL 0-15. 

TDBR - Serial line transmitter data buffer register. 

Trace bit - Bit 4 of the PSW that causes a trap to location 14. 

Transaction - A sequence of microcycles used to complete a designated microprocessor function such 
as read, write, ASPI, or IAK. 

Tri-state - A high impedance condition of the bus lines. 

Vector address - Memory location the microprocessor accesses for the address of the interrupt service 
routine during an interrupt. 

Wait state - A condition during which the microprocessor performs no useful transactions while waiting 
for a response or data. 

Wake up circuit - Holds BDCOK negated for 70 ms after dc power has been applied. 

F-5 





A 

ADOI-ADI5, 8-23 
Addressing modes, 7-1 
AIO-07, 8-15 
Architecture, 5-1 
ASPI,8-8 
Autobaud, 6-1 

B 

Backplane, 2-22 
BBS7, 9-4, 9-20 
BCLR, 8-6, 8-28 
BDCOK, 8-30, 9-17 
BDIN, 8-32, 9-19 
BDMGI, 9-8, 9-20 
BDMGO, 9-8, 9-20 
BDMR, 8-32,9-17 
BDOUT, 8-37, 9-18 
BEVNT, 2-9, 5-5,9-18 
BHALT, 2-9, 5-5, 9-17 
BINIT,9-20 
BIRQ4, 2-11, 5-5, 9-19 
BKRQ, 2-9, 5-5 
Bootstrap, 4-6 
BPOK, 8-30,9-17 
BREAK,6-1 
BRPLY, 9-18 
BSACK,9-18 
BSYNC, 9-19 
Bus control, 8-37 
Bus cycle, 9-3 
Bus signals, 9-1, 9-3 
BWTBT, 8-35, 9-19 
Byte, 7-25, 8-26, 8-35 

C 

CAS, 8-5 
Clock, 8-30 
Clock control, 8-30 

Condition codes, 7-28 
Configuration, 2-3, 2-7 
Control register, 6-22 
Control word, 6-22, 6-23 
COUT,8-6 
CSKTA, 8-25, 8-26 
CSKTB, 8-25, 8-26 
CTMER, 2-9, 5-5 
Cycle slip, 8-37 

D 

Data transfer, 9-3 
DATI,9-5 
DATa, 9-8 
DATOB,9-8 
Deferred addressing, 7-14 
Direct addressing, 7-5 
DMA, 5-4, 8-32, 9-8 
DMA bus master, 9-8 
DMA transaction, 9-8 
Double operand address, 7-41 

E 

EIA RS-232C, 2-25 
EIA RS-423, 2-25 

F 

Fetch/read, 8-6 
Firmware, 4-1 
FPLA,8-23 
Framing error, 6-4 
Functional block diagram, 8-2, 8-3 

H 

HALT, 5-5, 8-19 
Handshaking protocol, 6-25 
Hardware memory stack, 5-2 

INDEX-l 

INDEX 



I 

IAK,8-8 
Initialization, 8-1, 9-14 
Instruction set, 7-22 
Instruction set list, 7-26 
Interrupts, 2-8, 8-14 
Interrupt protocol, 9-12 
Interrupt set/reset, 8-8, 8-15 
Interrupt vector, 5-2, 8-16 
Interrupt vector initialization, 5-2 
IRQ4, 8-15 

J 

Jumper wire, 2-1 

K 

KXT11-A2,4-1 

L 

Loopback connector, 2-28 
LSI-II bus, 9-1 

M 

Macro-ODT,4-1 
Macro-ODT commands, 4-2 
Maskable, 5-2 
Memory maps, 2-16, 5-6 
Microcyc1e, 8-6 
Microcyc1e slip, 8-17 
Microprocessor, 8-1 
Mode 0, 6-10 
Mode 1,6-11 
Mode 2, 6-18 
Mode selection, 6-22 

N 

Nibble, 6-11 
Nonmaskable, 5-5 
NOP, 8-8 

o 

Overrun error, 6-4 

p 

Parallel I/O, 6-7 
Parallel I/O flowchart, 6-9 
Parallel I/O handshaking, 6-25 
Parallel I/O initialization, 6-25 
PARQST, 5-5, 8-16 
PBRQST, 5-5, 8-16 
PC addressing, 7-17 
PI (priority in), 8-5 
Power fail (PFAIL), 8-22 
Power fail routine, 8-22 
PQwer-up/down protocol, 5-5, 8-30, 9-15 
Ports A, B, C, 6-7 
PPI programming priority, 6-7 
Priority, 5-3 
Program counter (PC), 7-17, 8-1 
Programmable baud rates, 6-1 
Programmable baud rates enable, 6-5 
PSW register, 5-1 
PUP, 8-4 

R 

RAM, 2-16, 8-23 
RAS, 8-5 
RCSR,6-3 
RDBR,6-3 
RDL1, 5-5, 8-15, 8-26 
RDL2, 5-5, 8-15, 8-26 
Read,8-6 
Read/write, 8-5, 8-35 
READY, 8-5 
Reply time-outs, 8-19 
Restart address, 8-13 
REVNT, 8-14, 8-16 
ROM, 2-16, 8-25 
R/-WHB,8-5 
R/-WLB,8-5 
RTI,7-64 

S 

SELO /SEL 1, 8-5 
Serial I/O, 2-12, 6-1, 8-26 
Single operand address, 7-3 
Slew rate resistor, 2-26 
SLU1/SLU2, 6-1, 8-26 
SLU programming, 6-1 

INDEX-2 



Split speed, 6-1 
Spurious halts, 4-8 
Stack pointer, 5-1 
Standard factory configuration, 2-7 
Start address, 2-8 
Status register, 5-1 

T 

TCSR,6-1 
TDAL, 8-1, 8-38 
TDBR,6-1 
Terminal problems, 4-8 
TMER,8-37 
TSYNC, 8-35 
Transactions, 8-6 
Transmitter interrupt enable, 6-5 
Tristate, 8-8 

u 

Unsupported options, 3-4 

v 

Vector address, 5-4 
Verification procedure, 2-28 

w 
Wait state, 8-37 
Wake up circuit, 8-31 
Write transaction, 8-8 

x 

XDL1, 5-5, 8-15, 8-26 
XDL2, 5-5, 8-15, 8-26 
XTLOjXTL1,8-30 

INDEX-3 





SBC-11/21 Single-Board Computer User's Guide 
EK -SBCO 1-UG-OO 1 

Reader's Comments 

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our 
publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 
written, etc.? Is it easy to use? _____________________________ _ 

What faults or errors have you found in the manual? ___________________ _ 

Does this manual satisfy the need you think it was intended to satisfy? ____________ _ 

Does it satisfy your needs?, ____________ _ Why? _______________ __ 

o Please send me the current copy of the Technical Documentation Catalog, which contains information on 
the remainder of DIGITAL's technical documentation. 

Name _______________ __ Street _________________ _ 
Title __________________ _ City _________________ _ 
Company _____________ __ State/Country __________________ _ 

Department _____________ _ Zip 

Additional copies of this document are available from: 

Digital Equipment Corporation 
444 Whitney Street 
Northboro, MA 01532 
Attention: Printing and Circulating Service (NR2/MI5) 

Customer Services Section 

Order No. __ --'-,E,;;;..K;;.;;-..,;;;S.,;;;;B..,;;;C.,;;.O,;;;..l-..,;;;U....;G_-O,;;..O;;.,.;;l;...-. __ _ MR 



Do Not Tear - Fold Here ·and Staple 

IIIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD, MA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Digital Equipment Corporation 
Educational Services/Quality Assurance 
12 Crosby Drive (BU/EOS) 
Bedford, MA 01730 

No Postage 

Necessary 

if Mailed in the 

United States 



Digital Equipment Corporation· Bedford, MA 01730 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	D-41
	D-42
	D-43
	D-44
	D-45
	D-46
	D-47
	D-48
	D-49
	D-50
	D-51
	D-52
	D-53
	D-54
	D-55
	D-56
	D-57
	D-58
	D-59
	D-60
	D-61
	D-62
	D-63
	D-64
	D-65
	D-66
	D-67
	D-68
	D-69
	D-70
	D-71
	D-72
	D-73
	D-74
	D-75
	D-76
	D-77
	D-78
	E-01
	E-02
	E-03
	E-05
	E-07
	E-09
	E-11
	E-13
	E-15
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB
	xBack

